Zobrazeno 1 - 10
of 39
pro vyhledávání: '"39A33"'
In this work, we propose a generalization to the classical logistic map. The generalized map preserves most properties of the classical map and has richer dynamics as it contains the fractional order and one more parameter. We propose the stability b
Externí odkaz:
http://arxiv.org/abs/2409.07174
Periodic orbits and cycles, respectively, play a significant role in discrete- and continuous-time dynamical systems (i.e. maps and flows). To succinctly describe their shifts when the system is applied perturbation, the notions of functional and fun
Externí odkaz:
http://arxiv.org/abs/2407.08079
This study extends the functional perturbation theory~(FPT) of dynamical systems, which was initially developed for investigating the shifts of magnetic field line trajectories within the chaotic edge region of plasma when subjected to global perturb
Externí odkaz:
http://arxiv.org/abs/2407.06440
Stable and unstable manifolds, originating from hyperbolic cycles, fundamentally characterize the behaviour of dynamical systems in chaotic regions. This letter demonstrates that their shifts under perturbation, crucial for chaos control, are computa
Externí odkaz:
http://arxiv.org/abs/2407.06430
In the present work we revise a transformation that links generalized Lozi maps with max-type difference equations. In this view, according to the technique of topological conjugation, we relate the dynamics of a concrete Lozi map with a complete uni
Externí odkaz:
http://arxiv.org/abs/2209.03582
Autor:
Braverman, Elena, Rodkina, Alexandra
Publikováno v:
Discrete Contin. Dyn. Syst. Ser. B, Vol. 27 (2022), no. 10, 5419-5446
Pulse stabilization of cycles with Prediction-Based Control including noise and stochastic stabilization of maps with multiple equilibrium points is analyzed for continuous but, generally, non-smooth maps. Sufficient conditions of global stabilizatio
Externí odkaz:
http://arxiv.org/abs/2208.08980
Autor:
Hampton, Amanda E, Meiss, James D
Publikováno v:
SIAM J. Appl. Dyn. Sys. 21(1): 650-675 (2022)
We study the dynamics of the three-dimensional quadratic diffeomorphism using a concept first introduced thirty years ago for the Frenkel-Kontorova model of condensed matter physics: the anti-integrable (AI) limit. At the traditional AI limit, orbits
Externí odkaz:
http://arxiv.org/abs/2107.09776
Autor:
Faiza Zaamoune, Tidjani Menacer
Publikováno v:
Demonstratio Mathematica, Vol 56, Iss 1, Pp 311-315 (2023)
In this article, the behavior of hidden bifurcation in a two-dimensional (2D) scroll via saturated function series controlled by the coefficient harmonic linearization method is presented. A saturated function series approach for chaos generation. Th
Externí odkaz:
https://doaj.org/article/1cc685a5748b4a069da2c16fcf939dba
Publikováno v:
Alexandria Engineering Journal, Vol 64, Iss , Pp 937-945 (2023)
Some natural phenomena that arise in nonlinear sciences can be sometimes discussed using discrete-time systems. In this work, we investigate the periodicity, boundedness, oscillation, stability, and some exact solutions of nonlinear difference equati
Externí odkaz:
https://doaj.org/article/1b94f2c55a3e486e97fd35a5b268d066
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.