Zobrazeno 1 - 3
of 3
pro vyhledávání: '"37B05, 20M20"'
Autor:
Dai, Xiongping
Using Gottschalk's notion\,---\,weakly locally almost periodic point, we show in this paper that if $f\colon X\rightarrow X$ is a minimal continuous transformation of a compact Hausdorff space $X$ to itself, then for all entourage $\varepsilon$ of $X
Externí odkaz:
http://arxiv.org/abs/1806.09306
Autor:
Auslander, Joseph, Dai, Xiongping
Let $\pi\colon T\times X\rightarrow X$ with phase map $(t,x)\mapsto tx$, denoted $(\pi,T,X)$, be a \textit{semiflow} on a compact Hausdorff space $X$ with phase semigroup $T$. If each $t\in T$ is onto, $(\pi,T,X)$ is called surjective; and if each $t
Externí odkaz:
http://arxiv.org/abs/1708.00996
Autor:
Xiongping Dai, Joseph Auslander
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 39:4647-4711
Let $\pi\colon T\times X\rightarrow X$ with phase map $(t,x)\mapsto tx$, denoted $(\pi,T,X)$, be a \textit{semiflow} on a compact Hausdorff space $X$ with phase semigroup $T$. If each $t\in T$ is onto, $(\pi,T,X)$ is called surjective; and if each $t