Zobrazeno 1 - 9
of 9
pro vyhledávání: '"35d99 (secondary)"'
Autor:
Erceg, Marko, Mitrović, Darko
Publikováno v:
SIAM Journal on Mathematical Analysis, 54 (2022) 1775-1796
We prove existence of strong traces at $t=0$ for quasi-solutions to (multidimensional) degenerate parabolic equations with no non-degeneracy conditions. In order to solve the problem, we combine the blow up method and a strong precompactness result f
Externí odkaz:
http://arxiv.org/abs/2008.08307
Autor:
Klimsiak, Tomasz, Rozkosz, Andrzej
Publikováno v:
Monatsh. Math. 188 (2019) 689-702
In the paper, we first propose a definition of renormalized solution of semilinear elliptic equation involving operator corresponding to a general (possibly nonlocal) symmetric regular Dirichlet form satisfying the so-called absolute continuity condi
Externí odkaz:
http://arxiv.org/abs/1609.00922
Autor:
Klimsiak, Tomasz, Rozkosz, Andrzej
Publikováno v:
NoDEA Nonlinear Differential Equations Appl. 22 (2015) 1911--1934
We generalize the notion of renormalized solution to semilinear elliptic and parabolic equations involving operator associated with general (possibly nonlocal) regular Dirichlet form and smooth measure on the right-hand side. We show that under mild
Externí odkaz:
http://arxiv.org/abs/1507.06518
Publikováno v:
Advances in Nonlinear Analysis, Vol 10, Iss 1, Pp 707-731 (2020)
The Keller-Segel-Stokes system
Externí odkaz:
https://doaj.org/article/26a9e3ea0fc04614bea9af1d86c9cff5
Autor:
Abdulwahhab, Muhammad Alim
In this work we study the Lie group analysis of a generalized invicid Burgers' equations with damping. Seven inequivalent classes of this generalized equation were classified and many exact and transformed solutions were obtained for each class.
Externí odkaz:
http://arxiv.org/abs/0912.1631
Publikováno v:
Advances in Nonlinear Analysis, Vol 10, Iss 1, Pp 707-731 (2020)
The Keller-Segel-Stokes system (*) n t + u ⋅ ∇ n = Δ n − ∇ ⋅ ( n ∇ c ) + ρ n − μ n α , c t + u ⋅ ∇ c = Δ c − c + n , u t = Δ u + ∇ P − n ∇ Λ , ∇ ⋅ u = 0 , $$\begin{eqnarray*} \left\{ \begin{array}{lcll} n_t + u\cd
Autor:
Marko Erceg, Darko Mitrović
In this talk we study solutions to the degenerate parabolic equation $$ \partial_t u + \operatorname{; ; ; div}; ; ; _x f(u) = \operatorname{; ; ; div}; ; ; _x(a(u)\nabla u) \, , $$ subject to the initial condition $u(0, \cdot)=u_0$. Here the degener
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::780844a35696185df50ae75dbd109c47
https://www.bib.irb.hr/1221754
https://www.bib.irb.hr/1221754
Autor:
Andrzej Rozkosz, Tomasz Klimsiak
Publikováno v:
Nonlinear Differential Equations and Applications NoDEA. 22:1911-1934
We generalize the notion of renormalized solution to semilinear elliptic and parabolic equations involving operator associated with general (possibly nonlocal) regular Dirichlet form and smooth measure on the right-hand side. We show that under mild
Autor:
Andrzej Rozkosz, Tomasz Klimsiak
In the paper, we first propose a definition of renormalized solution of semilinear elliptic equation involving operator corresponding to a general (possibly nonlocal) symmetric regular Dirichlet form satisfying the so-called absolute continuity condi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::40196b9deb124b28746962cfc0887478