Zobrazeno 1 - 10
of 12
pro vyhledávání: '"35R30, 80A23"'
We present a novel method for reconstructing the thermal conductivity coefficient in 1D and 2D heat equations using moving sensors that dynamically traverse the domain to record sparse and noisy temperature measurements. We significantly reduce the c
Externí odkaz:
http://arxiv.org/abs/2410.22822
Autor:
Zhao, Yue
This paper is concerned with the inverse moving source problems for parabolic equations. Given the temporal function, we prove the uniqueness of the nonlinear inverse problem of determining the orbit function by final data measured in a bounded domai
Externí odkaz:
http://arxiv.org/abs/2303.07765
Autor:
Jbalia, Aymen, Khelifi, Abdessatar
This work deals with an inverse boundary value problem arising from the equation of heat conduction. We reconstruct small perturbations of the (isotropic) heat conductivity distribution from partial (on accessible part of the boundary) dynamic bounda
Externí odkaz:
http://arxiv.org/abs/1602.03059
Let $\Omega\subset\R^n$, $n\ge 3$, be a smooth bounded domain and consider a coupled system in $\Omega$ consisting of a conductivity equation $\nabla \cdot \gamma(x) \nabla u(t,x)=0$ and an anisotropic heat equation $\kappa^{-1}(x)\partial_t\psi(t,x)
Externí odkaz:
http://arxiv.org/abs/1012.3099
Autor:
Ikehata, Masaru, Kawashita, Mishio
Publikováno v:
Inverse Problems 26 (2010) 095004
The enclosure method was originally introduced for inverse problems of concerning non-destructive evaluation governed by elliptic equations. It was developed as one of useful approaches in inverse problems and applied for various equations. In this p
Externí odkaz:
http://arxiv.org/abs/1003.0947
Autor:
Ikehata, Masaru, Kawashita, Mishio
Publikováno v:
Inverse Problems 25(2009) 075005(10pp)
This paper shows how the enclosure method which was originally introduced for elliptic equations can be applied to inverse initial boundary value problems for parabolic equations. For the purpose a prototype of inverse initial boundary value problems
Externí odkaz:
http://arxiv.org/abs/0901.2754
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jbalia, Aymen, Khelifi, Abdessatar
This work deals with an inverse boundary value problem arising from the equation of heat conduction. We reconstruct small perturbations of the (isotropic) heat conductivity distribution from partial (on accessible part of the boundary) dynamic bounda
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::52887a6c93939c368f0657e9b0f1b5cb
http://arxiv.org/abs/1602.03059
http://arxiv.org/abs/1602.03059
Let $\Omega\subset\R^n$, $n\ge 3$, be a smooth bounded domain and consider a coupled system in $\Omega$ consisting of a conductivity equation $\nabla \cdot \gamma(x) \nabla u(t,x)=0$ and an anisotropic heat equation $\kappa^{-1}(x)\partial_t\psi(t,x)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::043513f826cdbd60135975e9c182f5b1
http://arxiv.org/abs/1012.3099
http://arxiv.org/abs/1012.3099
Autor:
Mishio Kawashita, Masaru Ikehata
The enclosure method was originally introduced for inverse problems of concerning non-destructive evaluation governed by elliptic equations. It was developed as one of useful approaches in inverse problems and applied for various equations. In this p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a9fe77fd8a6e722d4a0a169c719aee71
http://arxiv.org/abs/1003.0947
http://arxiv.org/abs/1003.0947