Zobrazeno 1 - 10
of 551
pro vyhledávání: '"35K08"'
Autor:
Bui, The Anh
Let $L$ be the Dunkl Laplacian on the Euclidean space $\mathbb R^N$ associated with a normalized root $R$ and a multiplicity function $k(\nu)\ge 0, \nu\in R$. In this paper, we first prove that the Besov and Triebel-Lizorkin spaces associated with th
Externí odkaz:
http://arxiv.org/abs/2412.01067
Autor:
Bui, The Anh, Duong, Xuan Thinh
Consider the discrete Laplacian $\Delta_d$ defined on the set of integers $\mathbb Z$ by \[ \Delta_d f(n) = -f(n+1) + 2f(n) -f(n-1), \ \ \ \ n\in \mathbb Z, \] where $f$ is a function defined on $\mathbb Z$. In this paper, we define Hardy spaces, Bes
Externí odkaz:
http://arxiv.org/abs/2411.19399
Autor:
Jia, Qiuye, Zhang, Junyong
We study the pointwise decay estimates for the Schr\"odinger and wave equations on a product cone $(X,g)$, where the metric $g=dr^2+r^2 h$ and $X=C(Y)=(0,\infty)\times Y$ is a product cone over the closed Riemannian manifold $(Y,h)$ with metric $h$.
Externí odkaz:
http://arxiv.org/abs/2411.16029
Autor:
Grube, Florian
We prove sharp two-sided estimates of the fundamental solution to the fractional Kolmogorov equation in $\mathbb{R}\times \mathbb{R}$ using Fourier methods. Additionally, we provide an explicit form of the fundamental solution in case of the square r
Externí odkaz:
http://arxiv.org/abs/2411.00687
Autor:
Liu, Guanhua
In this paper we give equivalent conditions for the weak parabolic Harnack inequality for general regular Dirichlet forms without killing part, in terms of local heat kernel estimates or growth lemmas. With a tail estimate on the jump measure, we obt
Externí odkaz:
http://arxiv.org/abs/2410.23732
Autor:
Hou, Haojie, Zhang, Xicheng
In this paper, we employ probabilistic techniques to derive sharp, explicit two-sided estimates for the heat kernel of the nonlocal kinetic operator $$ \Delta^{\alpha/2}_v + v \cdot \nabla_x, \quad \alpha \in (0, 2),\ (x,v)\in {\mathbb R}^{d}\times{\
Externí odkaz:
http://arxiv.org/abs/2410.18614
Autor:
Murugan, Mathav
Given suitable functions $V, \Psi:[0,\infty) \to [0,\infty)$, we obtain necessary and sufficient conditions on $V,\Psi$ for the existence of a metric measure space and a symmetric diffusion process that satisfies sub-Gaussian heat kernel estimates wi
Externí odkaz:
http://arxiv.org/abs/2410.15611
Autor:
Street, Brian
Let $(\mathfrak{M},\rho,\mu)$ be a metric space of homogeneous type, $p_0\in (1,\infty)$, and $T(t):L^{p_0}(\mathfrak{M},\mu)\rightarrow L^{p_0}(\mathfrak{M},\mu)$, $t\geq 0$, a strongly continuous semi-group. We provide sufficient conditions under w
Externí odkaz:
http://arxiv.org/abs/2410.14456
Autor:
Langowski, Bartosz, Nowak, Adam
Publikováno v:
J. Approx. Theory 304 (2024) 106103
We prove sharp estimates of the heat kernel associated with Fourier-Dini expansions on $(0,1)$ equipped with Lebesgue measure and the Neumann condition imposed on the right endpoint. Then we give several applications of this result including sharp bo
Externí odkaz:
http://arxiv.org/abs/2410.12732
Autor:
Deleporte, Alix, Rouveyrol, Marc
This article is a continuation of arXiv:2401.14977. We study the concentration properties of spectral projectors on manifolds, in connection with the uncertainty principle. In arXiv:2401.14977, the second author proved an optimal uncertainty principl
Externí odkaz:
http://arxiv.org/abs/2410.01323