Zobrazeno 1 - 10
of 22
pro vyhledávání: '"35J62, 35J20"'
Autor:
Bobkov, Vladimir, Tanaka, Mieko
We study the existence, multiplicity, and certain qualitative properties of solutions to the zero Dirichlet problem for the equation $-\Delta_p u = \lambda |u|^{p-2}u + a(x)|u|^{q-2}u$ in a bounded domain $\Omega \subset \mathbb{R}^N$, where $1
Externí odkaz:
http://arxiv.org/abs/2110.11849
Autor:
Bobkov, Vladimir, Tanaka, Mieko
Publikováno v:
Communications in Contemporary Mathematics, 2150008 (2021), 25
We study the zero Dirichlet problem for the equation $-\Delta_p u -\Delta_q u = \alpha |u|^{p-2}u+\beta |u|^{q-2}u$ in a bounded domain $\Omega \subset \mathbb{R}^N$, with $1
Externí odkaz:
http://arxiv.org/abs/2007.11623
Autor:
Pomponio, Alessio, Watanabe, Tatsuya
In this paper, we study a class of quasilinear elliptic equations which appears in nonlinear optics. By using the mountain pass theorem together with a technique of adding one dimension of space, we prove the existence of a non-trivial weak solution
Externí odkaz:
http://arxiv.org/abs/2004.04957
Autor:
Bobkov, Vladimir, Tanaka, Mieko
Publikováno v:
Open Mathematics, 18(1), (2020) 1030-1044
We obtain a generalization of the Picone inequality which, in combination with the classical Picone inequality, appears to be useful for problems with the $(p,q)$-Laplace type operators. With its help, as well as with the help of several other known
Externí odkaz:
http://arxiv.org/abs/2004.02928
Autor:
Bobkov, Vladimir, Tanaka, Mieko
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -), 198(5), (2019) 1651-1673
We consider the Dirichlet problem for the nonhomogeneous equation $-\Delta_p u -\Delta_q u = \alpha |u|^{p-2}u + \beta |u|^{q-2}u + f(x)$ in a bounded domain, where $p \neq q$, and $\alpha, \beta \in \mathbb{R}$ are parameters. We explore assumptions
Externí odkaz:
http://arxiv.org/abs/1807.07727
We are interested in standing waves of a modified Schr\"odinger equation coupled with the Chern-Simons gauge theory. By applying a constraint minimization of Nehari-Pohozaev type, we prove the existence of radial ground state solutions. We also inves
Externí odkaz:
http://arxiv.org/abs/1712.00592
Autor:
Bobkov, Vladimir, Tanaka, Mieko
Publikováno v:
Communications on Pure and Applied Analysis, 17(3), (2017) 1219-1253
We study in detail the existence, nonexistence and behavior of global minimizers, ground states and corresponding energy levels of the $(p,q)$-Laplace equation $-\Delta_p u -\Delta_q u = \alpha |u|^{p-2}u + \beta |u|^{q-2}u$ in a bounded domain $\Ome
Externí odkaz:
http://arxiv.org/abs/1706.03034
Autor:
Alves, C. O., Pimenta, M. T. O.
In this work we use variational methods to prove results on existence and concentration of solutions to a problem in $\mathbb{R}^N$ involving the $1-$Laplacian operator. A thorough analysis on the energy functional defined in the space of functions o
Externí odkaz:
http://arxiv.org/abs/1702.06718
Autor:
Figueiredo, G. M., Pimenta, M. T. O.
In this work it is studied a quasilinear elliptic problem in the whole space $\mathbb{R}^N$ involving the $1-$Laplacian operator, with potentials which can vanish at infinity. The Euler-Lagrange functional is defined in a space whose definition resem
Externí odkaz:
http://arxiv.org/abs/1611.06719
Autor:
Bobkov, Vladimir, Tanaka, Mieko
Publikováno v:
Advances in Nonlinear Analysis, 8(1), (2019) 101-129
We investigate the existence of nodal (sign-changing) solutions to the Dirichlet problem for two-parametric family of partially homogeneous $(p,q)$-Laplace equations $-\Delta_p u -\Delta_q u=\alpha |u|^{p-2}u+\beta |u|^{q-2}u$ where $p \neq q$. By vi
Externí odkaz:
http://arxiv.org/abs/1606.06092