Zobrazeno 1 - 10
of 168
pro vyhledávání: '"35J25, 35J60"'
We establish a nonlinear Calder\'on-Zygmund $L^2$-theory to the Dirichlet problem $$-|Du|^{\gamma}\Delta^N_p u=f\in L^2(\Omega)\quad {\rm in}\quad \Omega; \quad u=0 \ \mbox{on $\partial\Omega$} $$ for $n\ge2$, $ p>1$ and a large range of $\gamma>-1$,
Externí odkaz:
http://arxiv.org/abs/2411.03796
Autor:
Calamai, Alessandro, Infante, Gennaro
We investigate the existence of nontrivial solutions of parameter-dependent elliptic equations with deviated argument in annular-like domains in $\mathbb{R}^{n}$, with $n\geq 2$, subject to functional boundary conditions. In particular we consider a
Externí odkaz:
http://arxiv.org/abs/2410.11615
Autor:
Nguyen, Ngoc Cuong
We present a generative reduced basis (RB) approach to construct reduced order models for parametrized partial differential equations. Central to this approach is the construction of generative RB spaces that provide rapidly convergent approximations
Externí odkaz:
http://arxiv.org/abs/2410.05139
Autor:
Nguyen, Ngoc Cuong
We present novel model reduction methods for rapid solution of parametrized nonlinear partial differential equations (PDEs) in real-time or many-query contexts. Our approach combines reduced basis (RB) space for rapidly convergent approximation of th
Externí odkaz:
http://arxiv.org/abs/2410.02100
Autor:
Nguyen, Ngoc Cuong
We present a model reduction approach for the real-time solution of time-dependent nonlinear partial differential equations (PDEs) with parametric dependencies. The approach integrates several ingredients to develop efficient and accurate reduced-ord
Externí odkaz:
http://arxiv.org/abs/2410.02093
Let $\Omega\subset\mathbb{R}^N$ ($N\geq 3$) be a bounded $C^2$ domain and $\Sigma\subset\partial\Omega$ be a compact $C^2$ submanifold of dimension $k$. Denote the distance from $\Sigma$ by $d_\Sigma$. In this paper, we study positive solutions of th
Externí odkaz:
http://arxiv.org/abs/2406.00354
Autor:
Mallick, Mohan, Verma, Ram Baran
In this paper, we prove a theorem concerning the existence of three solutions for the following boundary value problem: \begin{equation*} -\mathcal{M}_{\lambda,\Lambda}^+(D^2u)-\Gamma|Du|^2=f(u)~~~\text{in}\ \Omega, u=0~~~\text{on}\ \partial\Omega, \
Externí odkaz:
http://arxiv.org/abs/2404.19042
In this paper we find out some new blow-up estimates for the positive explosive solutions of a paradigmatic class of elliptic boundary value problems of superlinear indefinite type. These estimates are obtained by combining the scaling technique of G
Externí odkaz:
http://arxiv.org/abs/2402.01519
Autor:
Penent, Guillaume, Privault, Nicolas
We provide sufficient conditions for the existence of viscosity solutions of fractional semilinear elliptic PDEs of index $\alpha \in (1,2)$ with polynomial gradient nonlinearities on $d$-dimensional balls, $d\geq 2$. Our approach uses a tree-based p
Externí odkaz:
http://arxiv.org/abs/2306.10913
Autor:
Nguyen, Ngoc Cuong, Peraire, Jaime
We introduce two hybridizable discontinuous Galerkin (HDG) methods for numerically solving the Monge-Ampere equation. The first HDG method is devised to solve the nonlinear elliptic Monge-Ampere equation by using Newton's method. The second HDG metho
Externí odkaz:
http://arxiv.org/abs/2306.05296