Zobrazeno 1 - 5
of 5
pro vyhledávání: '"35J20, 60G50"'
Autor:
Berg, M. van den, Hollander, F. den
We obtain bounds for the expected loss of torsional rigidity of a cylinder $\Omega_L=(-L/2,L/2) \times \Omega\subset \R^3$ of length $L$ due to a Brownian fracture that starts at a random point in $\Omega_L,$ and runs until the first time it exits $\
Externí odkaz:
http://arxiv.org/abs/1711.09838
Let $T^m$ be the $m$-dimensional unit torus, $m \in N$. The torsional rigidity of an open set $\Omega \subset T^m$ is the integral with respect to Lebesgue measure over all starting points $x \in \Omega$ of the expected lifetime in $\Omega$ of a Brow
Externí odkaz:
http://arxiv.org/abs/1604.07007
Publikováno v:
Potential Analysis 41 (2014) 501--515
In this paper we consider $\beta[0; s]$, Brownian motion of time length $s > 0$, in $m$-dimensional Euclidean space $\mathbb R^m$ and on the $m$-dimensional torus $\mathbb T^m$. We compute the expectation of (i) the heat content at time $t$ of $\math
Externí odkaz:
http://arxiv.org/abs/1304.0579
Publikováno v:
Potential Analysis, 48(3), 375-403
van den Berg, M, Bolthausen, E & den Hollander, F 2018, ' Torsional Rigidity for Regions with a Brownian Boundary ', Potential Analysis, vol. 48, no. 3, pp. 375-403 . https://doi.org/10.1007/s11118-017-9640-z
Potential Analysis
van den Berg, M, Bolthausen, E & den Hollander, F 2018, ' Torsional Rigidity for Regions with a Brownian Boundary ', Potential Analysis, vol. 48, no. 3, pp. 375-403 . https://doi.org/10.1007/s11118-017-9640-z
Potential Analysis
Let $T^m$ be the $m$-dimensional unit torus, $m \in N$. The torsional rigidity of an open set $\Omega \subset T^m$ is the integral with respect to Lebesgue measure over all starting points $x \in \Omega$ of the expected lifetime in $\Omega$ of a Brow
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a2e6382cfc8f0c7632c039a75c86fe4d
https://hdl.handle.net/1887/58455
https://hdl.handle.net/1887/58455
Publikováno v:
Potential Analysis
Potential Analysis, 41(2), 501-515. Springer Verlag (Germany)
Potential Analysis, 41(2), 501-515. Springer Verlag (Germany)
In this paper we consider $\beta[0; s]$, Brownian motion of time length $s > 0$, in $m$-dimensional Euclidean space $\mathbb R^m$ and on the $m$-dimensional torus $\mathbb T^m$. We compute the expectation of (i) the heat content at time $t$ of $\math
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dece450df0141b30eebe053ecc94064d
https://hdl.handle.net/1887/51783
https://hdl.handle.net/1887/51783