Zobrazeno 1 - 10
of 693
pro vyhledávání: '"35B32"'
Autor:
Wu, Qidong, Yi, Fengqi
Spatiotemporal pattern formations in two-layer coupled reaction-diffusion Lengyel-Epstein system with distributed delayed couplings are investigated. Firstly, for the original decoupled system, it is proved that when the intra-reactor diffusion rate
Externí odkaz:
http://arxiv.org/abs/2412.15531
Autor:
Logioti, Anna
We consider a Kuramoto-Shivashinsky like equation close to the threshold of instability with additive white noise and spatially periodic boundary conditions which simultaneously exhibit Turing bifurcations with a spatial 1:3 resonance of the critical
Externí odkaz:
http://arxiv.org/abs/2412.11870
In this paper, we study the behavior of multiple continua of solutions to the semilinear elliptic problem \begin{equation*} \begin{cases} -\Delta u = \lambda f(u) &\text{ in } \Omega, u=0 &\text{ on } \partial\Omega, \end{cases} \end{equation*} where
Externí odkaz:
http://arxiv.org/abs/2412.11690
Autor:
Katayama, Sho
We consider the Lane-Emden equation with a supercritical nonlinearity with an inhomogeneous Dirichlet boundary condition on an infinite cone. Under suitable conditions for the boundary data and the exponent of nonlinearity, we give a complete classif
Externí odkaz:
http://arxiv.org/abs/2411.14686
We study the exchange of stability in scalar reaction-diffusion equations which feature a slow passage through transcritical and pitchfork type singularities in the reaction term, using a novel adaptation of the geometric blow-up method. Our results
Externí odkaz:
http://arxiv.org/abs/2411.13679
Fluids subject to both thermal and compositional variations can undergo doubly diffusive convection when these properties both affect the fluid density and diffuse at different rates. In natural doubly diffusive convection, the gradients of temperatu
Externí odkaz:
http://arxiv.org/abs/2411.12111
Autor:
Schino, Jacopo, Smyrnelis, Panayotis
Given $m \in \mathbb{N} \setminus \{0\}$ and $\rho > 0$, we find solutions $(\lambda,u)$ to the problem \begin{equation*} \begin{cases} \bigl(-\frac{\mathrm{d}^2}{\mathrm{d} x^2}\bigr)^m u + \lambda G'(u) = F'(u)\\ \int_{\mathbb{R}} K(u) \, \mathrm{d
Externí odkaz:
http://arxiv.org/abs/2410.03318
Autor:
Hilder, Bastian, Jansen, Jonas
We study the bifurcation of planar patterns and fast-moving pattern interfaces in an asymptotic long-wave model for the three-dimensional B\'enard-Marangoni problem, which is close to a Turing instability. We derive the model from the full free-bound
Externí odkaz:
http://arxiv.org/abs/2410.02708
Autor:
Roberti, Luigi, Stefanescu, Eduard
We consider a model for the Antarctic Circumpolar Current in rotating spherical coordinates. After establishing global-in-time existence and uniqueness of classical solutions, we turn our attention to the issue of stability of a class of steady zonal
Externí odkaz:
http://arxiv.org/abs/2409.17013
Autor:
Krause, Andrew L., Klika, Václav, Villar-Sepúveda, Edgardo, Champneys, Alan R., Gaffney, Eamonn A.
Theories of localised pattern formation are important to understand a broad range of natural patterns, but are less well-understood than more established mechanisms of domain-filling pattern formation. Here, we extend recent work on pattern localisat
Externí odkaz:
http://arxiv.org/abs/2409.13043