Zobrazeno 1 - 6
of 6
pro vyhledávání: '"34A60, 49J53"'
This paper investigates the value function, $V$, of a Mayer optimal control problem with the state equation given by a differential inclusion. First, we obtain an invariance property for the proximal and Fr\'echet subdifferentials of $V$ along optima
Externí odkaz:
http://arxiv.org/abs/1408.5354
In optimal control,sensitivity relations are usually understood as inclusions that identify the pair formed by the dual arc and the Hamiltonian, evaluated along the associated minimizing trajectory, as a suitable generalized gradient of the value fun
Externí odkaz:
http://arxiv.org/abs/1402.4248
Autor:
Cannarsa, Piermarco, Nguyen, Khai T.
The minimum time function $T(\cdot)$ of smooth control systems is known to be locally semiconcave provided Petrov's controllability condition is satisfied. Moreover, such a regularity holds up to the boundary of the target under an inner ball assumpt
Externí odkaz:
http://arxiv.org/abs/1110.1387
Publikováno v:
SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2015, 53 (6), pp 3642/3672
SIAM Journal on Control and Optimization, 2015, 53 (6), pp 3642/3672
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2015, 53 (6), pp 3642/3672
SIAM Journal on Control and Optimization, 2015, 53 (6), pp 3642/3672
29 pages; International audience; This paper investigates the value function, $V$, of a Mayer optimal control problem with the state equation given by a differential inclusion. First, we obtain an invariance property for the proximal and Fréchet sub
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b11c11645ece129bc93a1c3e93c4e3a3
https://hal.sorbonne-universite.fr/hal-01057579v2
https://hal.sorbonne-universite.fr/hal-01057579v2
Publikováno v:
ESAIM: Control, Optimisation and Calculus of Variations
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2015, 21 (3), pp.789-814. ⟨10.1051/cocv/2014050⟩
ESAIM: Control, Optimisation and Calculus of Variations, 2015, 21 (3), pp.789-814. ⟨10.1051/cocv/2014050⟩
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2015, 21 (3), pp.789-814. ⟨10.1051/cocv/2014050⟩
ESAIM: Control, Optimisation and Calculus of Variations, 2015, 21 (3), pp.789-814. ⟨10.1051/cocv/2014050⟩
In optimal control, sensitivity relations are usually understood as inclusions that identify the pair formed by the dual arc and the Hamiltonian, evaluated along the associated minimizing trajectory, as a suitable generalized gradient of the value fu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2ddefbabaa4db54979b4905410a8d228
https://hal.sorbonne-universite.fr/hal-00949021/document
https://hal.sorbonne-universite.fr/hal-00949021/document
Autor:
Khai T. Nguyen, Piermarco Cannarsa
Publikováno v:
SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2011, 49 (6), pp.2558-2576. ⟨10.1137/110825078⟩
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2011, 49 (6), pp.2558-2576. ⟨10.1137/110825078⟩
International audience; The minimum time function $T(\cdot)$ of smooth control systems is known to be locally semiconcave provided Petrov's controllability condition is satisfied. Moreover, such a regularity holds up to the boundary of the target und
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::85bf0177aac46a6da2290b3f63e5a0d0