Zobrazeno 1 - 10
of 76
pro vyhledávání: '"32V99"'
Autor:
Taghavi-Chabert, Arman
We construct a one-parameter family of Lorentzian conformal structures on the canonical circle bundle of a partially integrable contact almost Cauchy-Riemann manifold. This builds on previous work by Leitner, who generalised Fefferman's construction
Externí odkaz:
http://arxiv.org/abs/2309.16986
Autor:
Kryński, Wojciech, Makhmali, Omid
Given a 3-dimensional (para-)CR structure, its family of chains define a 3-dimensional path geometry. We provide necessary and sufficient conditions that determine whether a path geometry in dimension three arises from chains of a CR or para-CR 3-man
Externí odkaz:
http://arxiv.org/abs/2303.08807
Autor:
Ornea, Liviu, Verbitsky, Misha
Publikováno v:
Math. Z. 299, 2287-2296 (2021)
A compact complex manifold $V$ is called Vaisman if it admits an Hermitian metric which is conformal to a K\"ahler one, and a non-isometric conformal action by $\mathbb C$. It is called quasi-regular if the $\mathbb C$-action has closed orbits. In th
Externí odkaz:
http://arxiv.org/abs/2102.05962
We show that the boundary of any bounded strongly pseudoconvex complete circular domain in $\mathbb C^2$ must contain points that are exceptionally tangent to a projective image of the unit sphere.
Comment: Some additional material
Comment: Some additional material
Externí odkaz:
http://arxiv.org/abs/1909.09542
Suppose $M_{1}$ and $M_{2}$ are $3$-dimensional closed (compact without boundary) CR manifolds with positive CR Yamabe constant. In this note, we show that the connected sum of $M_{1}$ and $M_{2}$ also admits a CR structure with positive CR Yamabe co
Externí odkaz:
http://arxiv.org/abs/1901.01357
Autor:
Fürdös, Stefan
In this article the notion of ultradifferentiable CR manifold is introduced and an ultradifferentiable regularity result for finitely nondegenerate CR mappings is proven. Here ultradifferentiable means with respect to Denjoy-Carleman classes defined
Externí odkaz:
http://arxiv.org/abs/1808.02685
Autor:
Ottazzi, Alessandro, Schmalz, Gerd
We consider hypersurfaces of finite type in a direct product space ${\mathbb R}^2 \times {\mathbb R}^2$, which are analogues to real hypersurfaces of finite type in ${\mathbb C}^2$. We shall consider separately the cases where such hypersurfaces are
Externí odkaz:
http://arxiv.org/abs/1611.07576
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ottazzi, Alessandro, Schmalz, Gerd
We describe the automorphisms of a singular multicontact structure, that is a generalisation of the Martinet distribution. Such a structure is interpreted as a para-CR structure on a hypersurface M of a direct product space R^2 x R^2. We introduce th
Externí odkaz:
http://arxiv.org/abs/1409.2229
Autor:
Hammond, C., Robles, C.
We study the equivalence problem under projective transformation for CR-hypersurfaces of complex projective space. A complete set of projective differential invariants for analytic hypersurfaces is given. The self-dual strongly C-linearly convex hype
Externí odkaz:
http://arxiv.org/abs/1010.5681