Zobrazeno 1 - 10
of 88
pro vyhledávání: '"30C45, 30C80"'
The Bohr radius for an arbitrary class $\mathcal{F}$ of analytic functions of the form $f(z)=\sum_{n=0}^{\infty}a_nz^n$ on the unit disk $\mathbb{D}=\{z\in\mathbb{C} : |z|<1\}$ is the largest radius $R_{\mathcal{F}}$ such that every function $f\in\ma
Externí odkaz:
http://arxiv.org/abs/2408.14773
Publikováno v:
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 32, Iss 3, Pp 57-74 (2024)
The authors propose to investigate some new criteria for a certain class of meromorphically strongly starlike functions in the punctured open unit disk. Some intriguing applications that arise as special cases of the main results, which are presented
Externí odkaz:
https://doaj.org/article/6c210b153cb84ecfaef9a26adec9b177
The association of subordination and special functions is used to find sharp estimates on the parameter $\beta$ such that the analytic function $p(z)$ is subordinate to certain functions having positive real part whenever $p(z)+\beta z p'(z)$ is subo
Externí odkaz:
http://arxiv.org/abs/2308.09283
Let $\mathcal{P}$ denote the Carath\'{e}odory class accommodating all the analytic functions $p$ having positive real part and satisfying $p(0)=1$. In this paper, the second coefficient of the normalized analytic function $f$ defined on the open unit
Externí odkaz:
http://arxiv.org/abs/2305.16210
Autor:
Carrasco, Pablo, Hernández, Rodrigo
The main purpose of this paper is to obtain sharp bounds of the norm of Schwarzian derivative for convex mappings of order $alpha$ in terms of the value of $f''(0)$, in particular, when this quantity is equal to zero. In addition, we obtain sharp bou
Externí odkaz:
http://arxiv.org/abs/2211.13563
This article determines the exact asymptotic value of the Bohr radii and the arithmetic Bohr radii for the holomorphic functions defined on the unit ball of the $\ell_p^n$ space and having values in the simply connected domain of $\mathbb{C}$. Moreov
Externí odkaz:
http://arxiv.org/abs/2205.07111
This paper aims to pursue some classes of normalized analytic functions $f$ with fixed second coefficient defined on open unit disk, such that ${(1+z)^2f(z)}/{z}$ and ${(1+z)f(z)}/{z}$ are functions having positive real part. The radius of strongly s
Externí odkaz:
http://arxiv.org/abs/2203.08704
In this paper, we determine the sharp estimates for Toeplitz determinants of a subclass of close-to-convex harmonic mappings. Moreover, we obtain an improved version of Bohr's inequalities for a subclass of close-to-convex harmonic mappings, whose an
Externí odkaz:
http://arxiv.org/abs/2110.11543
In this paper, we prove various radius results and obtain sufficient conditions using the convolution for the Ma-Minda classes $\mathcal{S}^*(\psi)$ and $\mathcal{C}(\psi)$ of starlike and convex analytic functions. We also obtain the Bohr radius for
Externí odkaz:
http://arxiv.org/abs/2106.04962
Sufficient conditions are determined on the parameters such that the generalized and normalized Bessel function of the first kind and other related functions belong to subclasses of starlike and convex functions defined in the unit disk associated wi
Externí odkaz:
http://arxiv.org/abs/2101.06045