Zobrazeno 1 - 10
of 144
pro vyhledávání: '"28A80, 28A78"'
Autor:
Orponen, Tuomas, Ren, Kevin
We show that the "sharp Kaufman projection theorem" from 2023 is sharp in the class of Ahlfors $(1,\delta^{-\epsilon})$-regular sets. This is in contrast with a recent result of the first author, which improves the projection theorem in the class of
Externí odkaz:
http://arxiv.org/abs/2411.04528
For a complex parameter $c$ outside the unit disk and an integer $n\ge2$, we examine the $n$-ary collinear fractal $E(c,n)$, defined as the attractor of the iterated function system $\{\mbox{$f_k \colon \mathbb{C} \longrightarrow \mathbb{C}$}\}_{k=1}
Externí odkaz:
http://arxiv.org/abs/2411.00160
Autor:
Fraser, Jonathan M.
Given an integer $d \geq 2$, $s \in (0,1]$, and $t \in [0,2(d-1)]$, suppose a set $X$ in $\mathbb{R}^d$ has the following property: there is a collection of lines of packing dimension $t$ such that every line from the collection intersects $X$ in a s
Externí odkaz:
http://arxiv.org/abs/2409.03678
Autor:
Orponen, Tuomas
Let $t \in (1,2)$, and let $B \subset \mathbb{R}^{2}$ be a Borel set with $\dim_{\mathrm{H}} B > t$. I show that $$\mathcal{H}^{1}(\{e \in S^{1} : \dim_{\mathrm{H}} (B \cap \ell_{x,e}) \geq t - 1\}) > 0$$ for all $x \in \mathbb{R}^{2} \, \setminus \,
Externí odkaz:
http://arxiv.org/abs/2311.14481
Autor:
Xiao, Jian-Ci
Let $K\subset\mathbb{R}^d$ be a self-similar set generated by an iterated function system $\{\varphi_i\}_{i=1}^m$ satisfying the strong separation condition and let $f$ be a contracting similitude with $f(K)\subset K$. We show that $f(K)$ is relative
Externí odkaz:
http://arxiv.org/abs/2310.12043
One formulation of Marstrand's slicing theorem is the following. Assume that $t \in (1,2]$, and $B \subset \mathbb{R}^{2}$ is a Borel set with $\mathcal{H}^{t}(B) < \infty$. Then, for almost all directions $e \in S^{1}$, $\mathcal{H}^{t}$ almost all
Externí odkaz:
http://arxiv.org/abs/2310.11219
We prove some weighted refined decoupling estimates. As an application, we give an alternative proof of the following result on Falconer's distance set problem by the authors in a companion work: if a compact set $E\subset \mathbb{R}^d$ has Hausdorff
Externí odkaz:
http://arxiv.org/abs/2309.04501
We show that if a compact set $E\subset \mathbb{R}^d$ has Hausdorff dimension larger than $\frac{d}{2}+\frac{1}{4}-\frac{1}{8d+4}$, where $d\geq 3$, then there is a point $x\in E$ such that the pinned distance set $\Delta_x(E)$ has positive Lebesgue
Externí odkaz:
http://arxiv.org/abs/2309.04103
Autor:
Ren, Kevin
We generalize a Furstenberg-type result of Orponen-Shmerkin to higher dimensions, leading to an $\epsilon$-improvement in Kaufman's projection theorem for hyperplanes and an unconditional discretized radial projection theorem in the spirit of Orponen
Externí odkaz:
http://arxiv.org/abs/2309.04097
Autor:
Ren, Kevin, Wang, Hong
We fully resolve the Furstenberg set conjecture in $\mathbb{R}^2$, that a $(s, t)$-Furstenberg set has Hausdorff dimension $\ge \min(s+t, \frac{3s+t}{2}, s+1)$. As a result, we obtain an analogue of Elekes' bound for the discretized sum-product probl
Externí odkaz:
http://arxiv.org/abs/2308.08819