Zobrazeno 1 - 4
of 4
pro vyhledávání: '"26E60 33E05"'
Autor:
Shen, Junxuan
In this paper, we present the best possible parameters $\alpha_i, \beta_i\ (i=1,2,3)$ and $\alpha_4,\beta_4\in(1/2,1)$ such that the double inequalities \begin{align*} \alpha_1Q(a,b)+(1-\alpha_1)C(a,b)&
Externí odkaz:
http://arxiv.org/abs/1812.04847
Autor:
Jiang, Wei-Dong, Qi, Feng
Publikováno v:
Publications de l'Institut Mathematique (Beograd) 99 (2016), no. 113, 237--242
In the paper, the authors find the greatest value $\lambda$ and the least value $\mu $ such that the double inequality \begin{multline*} C(\lambda a+(1-\lambda)b,\lambda b+(1-\lambda )a)<\alpha A(a,b)+(1-\alpha)T(a,b)\\ < C(\mu a+(1-\mu)b,\mu b+(1-\m
Externí odkaz:
http://arxiv.org/abs/1402.4561
Publikováno v:
Filomat 28 (2014), no. 4, 775--780
In the paper, the authors discover the best constants $\alpha_{1}$, $\alpha_{2}$, $\beta_{1}$, and $\beta_{2}$ for the double inequalities $$ \alpha_{1}\bar{C}(a,b)+(1-\alpha_{1}) A(a,b)< T(a,b) <\beta_{1} \bar{C}(a,b)+(1-\beta_{1})A(a,b) $$ and $$ \
Externí odkaz:
http://arxiv.org/abs/1303.2451
Publikováno v:
Filomat. 28:775-780
In the paper, the authors discover the best constants $\alpha_{1}$, $\alpha_{2}$, $\beta_{1}$, and $\beta_{2}$ for the double inequalities $$ \alpha_{1}\bar{C}(a,b)+(1-\alpha_{1}) A(a,b)< T(a,b) 0$ with $a\ne b$, where $$ \bar{C}(a,b)=\frac{2(a^{2}+a