Zobrazeno 1 - 10
of 38
pro vyhledávání: '"26D07, 26D15"'
Autor:
Rashid, M. H. M.
This paper undertakes a thorough investigation of matrix means interpolation and comparison. We expand the parameter $\vartheta$ beyond the closed interval $[0,1]$ to cover the entire positive real line, denoted as $\mathbb{R}^+$. Furthermore, we exp
Externí odkaz:
http://arxiv.org/abs/2409.16171
Autor:
Demir, Sakin
Publikováno v:
New York Journal of Mathematics, Vol. 28, 2022, pp. 1099-1111
Let $f$ be a locally integrable function defined on $\mathbb{R}$, and let $(n_k)$ be a lacunary sequence. Define the operator $A_{n_k}$ by $$A_{n_k}f(x)=\frac{1}{n_k}\int_0^{n_k}f(x-t)\, dt.$$ We prove various types of new inequalities for the variat
Externí odkaz:
http://arxiv.org/abs/2203.02154
Some mathematical inequalities among various weighted means are studied. Inequalities on weighted logarithmic mean are given. Besides, the gap in Jensen's inequality is studied as a convex function approach. Consequently, some non-trivial inequalitie
Externí odkaz:
http://arxiv.org/abs/2110.06493
Autor:
Segura, Javier
Let $I_{\nu}(x)$ and $K_{\nu}(x)$ be the first and second kind modified Bessel functions. It is shown that the nullclines of the Riccati equation satisfied by $x^{\alpha} \Phi_{i,\nu}(x)$, $i=1,2$, with $\Phi_{1,\nu}=I_{\nu-1}(x)/I_{\nu}(x)$ and $\Ph
Externí odkaz:
http://arxiv.org/abs/2105.02524
Autor:
Pinelis, Iosif
Lower and upper bounds $B_a(x)$ on the incomplete gamma function $\Gamma(a,x)$ are given for all real $a$ and all real $x>0$. These bounds $B_a(x)$ are exact in the sense that $B_a(x)\underset{x\downarrow0}\sim\Gamma(a,x)$ and $B_a(x)\underset{x\to\i
Externí odkaz:
http://arxiv.org/abs/2005.06384
The purpose of this paper is to study a generalization of strongly $\eta$-convex functions using the fractal calculus developed by Yang \cite{Yang}, namely generalized strongly $\eta$-convex function. Among other results, we obtain some Hermite-Hadam
Externí odkaz:
http://arxiv.org/abs/2004.06852
Autor:
Demir, Sakin
Publikováno v:
Bulletin of the Hellenic Mathematical Society, Vol. 64, 2020, pp. 92.-97
Let $f$ be a measurable function defined on $\mathbb{R}$. For each $n\in\mathbb{Z}$ define the operator $A_n$ by $$A_nf(x)=\frac{1}{2^n}\int_x^{x+2^n}f(y)\, dy.$$ Consider the variation operator $$\mathcal{V}f(x)=\left(\sum_{n=-\infty}^\infty|A_nf(x)
Externí odkaz:
http://arxiv.org/abs/2001.09316
Autor:
Simic, Slavko
We presented here a refinement of Hermite-Hadamard inequality as a linear combination of its end-points. The problem of best possible constants is closely connected with well known Simpson's rule in numerical integration. It is solved here for a wide
Externí odkaz:
http://arxiv.org/abs/1611.01905
Autor:
Ellard, Richard, Šmigoc, Helena
We derive families of Newton-like inequalities involving the elementary symmetric functions of sets of self-conjugate complex numbers in the right half-plane. These are the first known inequalities of this type which are independent of the proximity
Externí odkaz:
http://arxiv.org/abs/1604.05148
Autor:
Maksa, Gyula, Páles, Zsolt
Publikováno v:
Aequationes Mathematicae 89(1) (2015), 161-167
In this paper we investigate continuity properties of functions $f:\mathbb{R}_+\to\mathbb{R}_+$ that satisfy the $(p,q)$-Jensen convexity inequality $$ f\big(H_p(x,y)\big)\leq H_q(f(x),f(y)) \qquad(x,y>0), $$ where $H_p$ stands for the $p$th power (o
Externí odkaz:
http://arxiv.org/abs/1512.07272