Zobrazeno 1 - 10
of 2 005
pro vyhledávání: '"22E50"'
Autor:
Cohen, Jonathan
Let $F$ be a non-archimedean local field of characteristic zero. If $F$ has even residual characteristic, we assume $F/\mathbb{Q}_2$ is unramified. Let $V$ be a depth zero, irreducible, nongeneric supercuspidal representation of $GSp(4, F)$. We calcu
Externí odkaz:
http://arxiv.org/abs/2411.04973
Autor:
Li, Wen-Wei
Let $\mathrm{Mp}(2n)$ be the metaplectic group of rank $n$ over a local field $F$ of characteristic zero. In this note, we determine the behavior of endoscopic transfer for $\mathrm{Mp}(2n)$ under variation of additive characters of $F$. The argument
Externí odkaz:
http://arxiv.org/abs/2411.03091
We compute the stable wave front set of theta representations for certain tame Brylinski-Deligne covers of a connected reductive $p$-adic group. The computation involves two main inputs. First we use a theorem of Okada, adapted to covering groups, to
Externí odkaz:
http://arxiv.org/abs/2411.02073
Autor:
Girsch, Johannes
We define the twisted doubling zeta integrals of Cai-Friedberg-Ginzburg-Kaplan in the setting of algebraic families. We then prove a rationality result and a functional equation for these zeta integrals. This allows us to define an unnormalized $\gam
Externí odkaz:
http://arxiv.org/abs/2410.22525
Autor:
Aubert, Anne-Marie, Plymen, Roger
We consider the depth-zero supercuspidal $L$-packets of $\mathrm{SL}_2$. With the aid of the classical character formulas of Sally-Shalika, we prove the endoscopic character identities. For the depth-zero $L$-packet of cardinality $4$, we find that,
Externí odkaz:
http://arxiv.org/abs/2410.20183
Autor:
Li, Wen-Wei
For metaplectic groups over a local field of characteristic zero, we define the Arthur packet attached to any Arthur parameter $\psi$ as a multi-set of unitary genuine irreducible representations, characterized by endoscopic character relations. Over
Externí odkaz:
http://arxiv.org/abs/2410.13606
Autor:
Sheth, Mihir
Let $G$ be a $p$-adic reductive group and $R$ be a noetherian Jacobson $\mathbb{Z}[1/p]$-algebra. In this note, we show that every smooth irreducible $R$-linear representation of $G$ is admissible using the finiteness result of Dat, Helm, Kurinczuk a
Externí odkaz:
http://arxiv.org/abs/2410.10881
Autor:
Adams, Jeffrey, Afgoustidis, Alexandre
Let $G(\mathbb{R})$ be a real reductive group. Suppose $\pi$ is an irreducible representation of $G(\mathbb{R})$ having a Whittaker model, and consider three invariants of $\pi$ related to nilpotents elements of the Lie algebra of $G$ (or its dual):
Externí odkaz:
http://arxiv.org/abs/2410.04134
Autor:
Wang, Chuijia, Zou, Jiandi
Let $K$ be a non-archimedean local field of residual characteristic $p\neq 2$. Let $G$ be a connected reductive group over $K$, let $\theta$ be an involution of $G$ over $K$, and let $H$ be the connected component of $\theta$-fixed subgroup of $G$ ov
Externí odkaz:
http://arxiv.org/abs/2410.03247
Let $F$ be a totally real field. We study the root numbers $\epsilon(1/2, \pi)$ of self-dual cuspidal automorphic representations $\pi$ of $\mathrm{GL}_{2N}/F$ with conductor $\mathfrak n$ and regular integral infinitesimal character $\lambda$. If $\
Externí odkaz:
http://arxiv.org/abs/2410.01976