Zobrazeno 1 - 9
of 9
pro vyhledávání: '"20E08, 46L80"'
Autor:
Mundey, Alexander, Rennie, Adam
We provide a Cuntz-Pimsner model for graph of groups $C^*$-algebras. This allows us to compute the $K$-theory of a range of examples and show that graph of groups $C^*$-algebras can be realised as Exel-Pardo algebras. We also make a preliminary inves
Externí odkaz:
http://arxiv.org/abs/2005.06141
Autor:
Robertson, Guyan, Steger, Tim
Publikováno v:
Proc. London Math. Soc. 72 (1996), 613--637
A subgroup of an amenable group is amenable. The $C^*$-algebra version of this fact is false. This was first proved by M.-D. Choi who proved that the non-nuclear $C^*$-algebra $C^*_r(\ZZ_2*\ZZ_3)$ is a subalgebra of the nuclear Cuntz algebra ${\cal O
Externí odkaz:
http://arxiv.org/abs/1302.5920
Autor:
Robertson, Guyan
Publikováno v:
J. Combin. Theory Ser. A, 115 (2008), 1272-1278
Let $\Gamma$ be the fundamental group of a finite connected graph $\mathcal G$. Let $\mathfrak M$ be an abelian group. A {\it distribution} on the boundary $\partial\Delta$ of the universal covering tree $\Delta$ is an $\mathfrak M$-valued measure de
Externí odkaz:
http://arxiv.org/abs/0801.0667
Autor:
Robertson, Guyan
Publikováno v:
Proc. Amer. Math. Soc., 136 (2008), 3851-3860
Let $\Delta$ be an infinite, locally finite tree with more than two ends. Let $\Gamma<\aut(\Delta)$ be an acylindrical uniform lattice. Then the boundary algebra $\cl A_\Gamma = C(\partial\Delta)\rtimes \Gamma$ is a simple Cuntz-Krieger algebra whose
Externí odkaz:
http://arxiv.org/abs/0710.3460
We classify graph C*-algebras, namely, Cuntz-Krieger algebras associated to the Bass-Hashimoto edge incidence operator of a finite graph. This is done by a purely graph theoretical calculation of the K-theory and the position of the unit therein.
Externí odkaz:
http://arxiv.org/abs/math/0606582
Autor:
Adam Rennie, Alexander Mundey
Publikováno v:
Journal of Mathematical Analysis and Applications. 496:124838
We provide a Cuntz-Pimsner model for graph of groups $C^*$-algebras. This allows us to compute the $K$-theory of a range of examples and show that graph of groups $C^*$-algebras can be realised as Exel-Pardo algebras. We also make a preliminary inves
Autor:
Guyan Robertson, Tim Steger
A subgroup of an amenable group is amenable. The $C^*$-algebra version of this fact is false. This was first proved by M.-D. Choi who proved that the non-nuclear $C^*$-algebra $C^*_r(\ZZ_2*\ZZ_3)$ is a subalgebra of the nuclear Cuntz algebra ${\cal O
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e4a01a43b5c47550dff1aa572af76ade
Autor:
Guyan Robertson
Let $\Gamma$ be the fundamental group of a finite connected graph $\mathcal G$. Let $\mathfrak M$ be an abelian group. A {\it distribution} on the boundary $\partial\Delta$ of the universal covering tree $\Delta$ is an $\mathfrak M$-valued measure de
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3fb7f5e4ca3b887be42b48c44ea97adf
http://arxiv.org/abs/0801.0667
http://arxiv.org/abs/0801.0667
We classify graph C*-algebras, namely, Cuntz-Krieger algebras associated to the Bass-Hashimoto edge incidence operator of a finite graph. This is done by a purely graph theoretical calculation of the K-theory and the position of the unit therein.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ab23a1fcf015af38ad9d3764909a5efe
http://arxiv.org/abs/math/0606582
http://arxiv.org/abs/math/0606582