Zobrazeno 1 - 6
of 6
pro vyhledávání: '"20B30, 05C25"'
A coset geometry representation of regular dessins is established, and employed to describe quotients and coverings of regular dessins and surfaces. A characterization is then given of face-quasiprimitive regular dessins as coverings of unicellular r
Externí odkaz:
http://arxiv.org/abs/2409.01979
Previous research established that the maximal rank of the abstract regular polytopes whose automorphism group is a transitive proper subgroup of $\Sym_n$ is $n/2 + 1$, with only two polytopes attaining this rank, both of which having odd ranks. In t
Externí odkaz:
http://arxiv.org/abs/2407.16003
Autor:
Song, Shu Jiao
This short paper presents characterisations of normal arc-transitive circulants and arc-transitive normal circulants, that is, for a connected arc-transitive circulant $\Gamma=\Cay(C,S)$, it is shown that 1. Aut(C,S) is transitive on S if and only if
Externí odkaz:
http://arxiv.org/abs/2101.04270
Autor:
Song, Shu Jiao
We present a characterization of finite permutation groups which contain a transitive dihedral subgroup.
Comment: 12 pages
Comment: 12 pages
Externí odkaz:
http://arxiv.org/abs/2101.04265
Let $G=A_n$, a finite alternating group. We study the commuting graph of $G$ and establish, for all possible values of $n$ barring $13, 14, 17$ and $19$, whether or not the independence number is equal to the clique-covering number.
Comment: 11
Comment: 11
Externí odkaz:
http://arxiv.org/abs/1510.05953
Publikováno v:
Barrantes, D., Gill, N. & Ramírez, J. Abelian covers of alternating groups. Arch. Math. 107, 135–150 (2016).
Repositorio UNA
Universidad Nacional de Costa Rica
instacron:UNA
Repositorio UNA
Universidad Nacional de Costa Rica
instacron:UNA
Let $G=A_n$, a finite alternating group. We study the commuting graph of $G$ and establish, for all possible values of $n$ barring $13, 14, 17$ and $19$, whether or not the independence number is equal to the clique-covering number.
11 pages
11 pages