Zobrazeno 1 - 9
of 9
pro vyhledávání: '"18G25, 16E30"'
Autor:
Ma, Yajun, Zheng, Junling
In this paper, we investigate the behavior of Igusa-Todorov distances, extension and Rouquier dimensions under cleft extensions of abelian categories. Applications are given to Morita context rings, trivial extension rings, tensor rings and arrow rem
Externí odkaz:
http://arxiv.org/abs/2411.07804
Autor:
Cox, Sean
Salce \cite{MR565595} introduced the notion of a \emph{cotorsion pair} of classes of abelian groups, and asked whether every such pair is \emph{complete} (i.e., has enough injectives and projectives). We prove that it is consistent, relative to the c
Externí odkaz:
http://arxiv.org/abs/2103.06687
Publikováno v:
Bulletin of the Malaysian Mathematical Sciences Society, 43(2) (2020), 1989--2007
For a ring $R$ and an additive subcategory $\C$ of the category $\Mod R$ of left $R$-modules, under some conditions we prove that the right Gorenstein subcategory of $\Mod R$ and the left Gorenstein subcategory of $\Mod R^{op}$ relative to $\C$ form
Externí odkaz:
http://arxiv.org/abs/2006.12313
Autor:
Zhao, Tiwei, Huang, Zhaoyong
In this paper, we introduce and study relative phantom morphisms in extriangulated categories defined by Nakaoka and Palu. Then using their properties, we show that if $(\C,\E,\s)$ is an extriangulated category with enough injective objects and proje
Externí odkaz:
http://arxiv.org/abs/1611.00477
Autor:
Huang, Zhaoyong
Publikováno v:
Can. Math. Bull. 57 (2014) 318-325
Let $R$ be an arbitrary ring and $(-)^+=\Hom_{\mathbb{Z}}(-, \mathbb{Q}/\mathbb{Z})$ where $\mathbb{Z}$ is the ring of integers and $\mathbb{Q}$ is the ring of rational numbers, and let $\mathcal{C}$ be a subcategory of left $R$-modules and $\mathcal
Externí odkaz:
http://arxiv.org/abs/1306.4088
Autor:
Cox, Sean
Publikováno v:
Bulletin of the London Mathematical Society. 54:1363-1374
Salce \cite{MR565595} introduced the notion of a \emph{cotorsion pair} of classes of abelian groups, and asked whether every such pair is \emph{complete} (i.e., has enough injectives and projectives). We prove that it is consistent, relative to the c
For a ring R and an additive subcategory $$\mathscr {C}$$ of the category $$\mathop {\mathrm{Mod}}\nolimits R$$ of left R-modules, under some conditions, we prove that the right Gorenstein subcategory of $$\mathop {\mathrm{Mod}}\nolimits R$$ and the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9ee271afe8c7409c26f91696dc5136de
http://arxiv.org/abs/2006.12313
http://arxiv.org/abs/2006.12313
Autor:
Tiwei Zhao, Zhaoyong Huang
Publikováno v:
Taiwanese J. Math. 23, no. 1 (2019), 29-61
In this paper, we introduce and study relative phantom morphisms in extriangulated categories defined by Nakaoka and Palu. Then using their properties, we show that if $(\C,\E,\s)$ is an extriangulated category with enough injective objects and proje
Autor:
Zhaoyong Huang
Let $R$ be an arbitrary ring and $(-)^+=\Hom_{\mathbb{Z}}(-, \mathbb{Q}/\mathbb{Z})$ where $\mathbb{Z}$ is the ring of integers and $\mathbb{Q}$ is the ring of rational numbers, and let $\mathcal{C}$ be a subcategory of left $R$-modules and $\mathcal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b9c959fba1b7f23006c5776d794ee05
http://arxiv.org/abs/1306.4088
http://arxiv.org/abs/1306.4088