Zobrazeno 1 - 10
of 17
pro vyhledávání: '"18D10, 16W30"'
Autor:
Nikshych, Dmitri
We show that braidings on a fusion category $\mathcal{C}$ correspond to certain fusion subcategories of the center of $\mathcal{C}$ transversal to the canonical Lagrangian algebra. This allows to classify braidings on non-degenerate and group-theoret
Externí odkaz:
http://arxiv.org/abs/1801.06125
We present explicit examples finite tensor categories that are C_2-graded extensions of the corepresentation category of certain finite-dimensional non-semisimple Hopf algebras.
Comment: 26 pages. An error in the product given in definition 4.7
Comment: 26 pages. An error in the product given in definition 4.7
Externí odkaz:
http://arxiv.org/abs/1405.0979
For any finite-dimensional Hopf algebra $H$ we construct a group homomorphism $\biga(H)\to \text{BrPic}(\Rep(H))$, from the group of equivalence classes of $H$-biGalois objects to the group of equivalence classes of invertible exact $\Rep(H)$-bimodul
Externí odkaz:
http://arxiv.org/abs/1402.2955
Autor:
Dong, Jingcheng, Dai, Li
Publikováno v:
Communications in Algebra, 42:11, 4955-4961, 2014
Let $k$ be an algebraically closedfield of characteristic zero. In this paper we consider an integral fusion category over $k$ in which the Frobenius-Perron dimensions of its simple objects are at most 3. We prove that such fusion category is of Frob
Externí odkaz:
http://arxiv.org/abs/1308.5386
Autor:
Mombelli, Martin
We develop further the techniques presented in [M. Mombelli. On the tensor product of bimodule categories over Hopf algebras. Preprint arXiv:1111.1610 ] to study bimodule categories over the representation categories of arbitrary finite-dimensional H
Externí odkaz:
http://arxiv.org/abs/1202.6238
Autor:
Mombelli, Martin
Let H be a finite-dimensional Hopf algebra. We give a description of the tensor product of bimodule categories over Rep(H). When the bimodule categories are invertible this description can be given explicitly. We present some consequences of this des
Externí odkaz:
http://arxiv.org/abs/1111.1610
In [J.M. Fern\'andez Vilaboa, R. Gonz\'alez Rodr\'iguez and A.B. Rodr\'iguez Raposo: Preunits and weak crossed products. J. of Pure Appl. Algebra 213, 2244-2261 (2009)] the notion of a weak crossed product of an algebra by an object, both living in a
Externí odkaz:
http://arxiv.org/abs/1110.6724
Autor:
Ardizzoni, A., Menini, C.
We investigate the notion of associated graded coalgebra (algebra) of a bialgebra with respect to a subbialgebra (quotient bialgebra) and characterize those which are bialgebras of type one in the framework of abelian braided monoidal categories.
Externí odkaz:
http://arxiv.org/abs/0704.2106
Autor:
Ardizzoni, A., Menini, C.
Braided bialgebras of type one in abelian braided monoidal categories are characterized as braided graded bialgebras which are strongly $\mathbb{N}$-graded both as an algebra and as a coalgebra.
Externí odkaz:
http://arxiv.org/abs/math/0702604
Autor:
Dmitri Nikshych
We show that braidings on a fusion category $\mathcal{C}$ correspond to certain fusion subcategories of the center of $\mathcal{C}$ transversal to the canonical Lagrangian algebra. This allows to classify braidings on non-degenerate and group-theoret
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7058b4e14fd55316cd43dd3913b812b2
http://arxiv.org/abs/1801.06125
http://arxiv.org/abs/1801.06125