Zobrazeno 1 - 10
of 98
pro vyhledávání: '"17b75"'
Autor:
Chen, Yin, Zhang, Runxuan
We develop a deformation theory for finite-dimensional left-symmetric color algebras, which can be used to construct more new algebraic structures and interpret left-symmetric color cohomology spaces of lower degrees. We explore equivalence classes a
Externí odkaz:
http://arxiv.org/abs/2411.10370
Autor:
Ncib, Othmen, Silvestrov, Sergei
The purpose of this paper is to introduce the class of noncommutative $3$-BiHom-Poisson color algebras, which is a combination of $3$-BiHom-Lie color algebras and BiHom-associative color algebras under a compatibility condition, called BiHom-Leibniz
Externí odkaz:
http://arxiv.org/abs/2411.01413
Autor:
Chen, Yin, Zhang, Runxuan
We develop a new cohomology theory for finite-dimensional left-symmetric color algebras and their finite-dimensional bimodules, establishing a connection between Lie color cohomology and left-symmetric color cohomology. We prove that the cohomology o
Externí odkaz:
http://arxiv.org/abs/2408.04033
Autor:
Ryan, Mitchell
The L\'evy-Leblond equation with free potential admits a symmetry algebra that is a $ \mathbb{Z}_2\times\mathbb{Z}_2 $-graded colour Lie superalgebra (see arXiv:1609.08224). We extend this result in two directions by considering a time-independent ve
Externí odkaz:
http://arxiv.org/abs/2407.19723
Autor:
Ryan, Mitchell
We apply the loop module construction of arXiv:1504.05114 in the context of Lie colour algebras. We construct a bijection between the equivalence classes of all finite-dimensional graded irreducible Lie colour algebra representations from the irreduc
Externí odkaz:
http://arxiv.org/abs/2403.02855
Autor:
Khalili, Valiollah
In this paper we introduce the class of graded Poisson color algebras as the natural generalization of graded Poisson algebras and graded Poisson superalgebras. For $\Lambda$ an arbitrary abelian group, we show that any of such $\Lambda$-graed Poisso
Externí odkaz:
http://arxiv.org/abs/2303.13832
Autor:
Heckenberger, I., Vendramin, L.
Publikováno v:
Bull. Belg. Math. Soc. Simon Stevin 30 (2023), 577-600
We use Cartier's preadditive symmetric monoidal categories to study Lie bialgebras. We prove that bosonization can be done consistently in this framework. In the last part of the paper we present explicit examples and indicate a deep relationship bet
Externí odkaz:
http://arxiv.org/abs/2209.02115
Autor:
Wang, Shujuan, Liu, Wende
Let $\Gamma$ be a finite group and $V$ a finite-dimensional $\Gamma$-graded space over an algebraically closed field of characteristic not equal to 2. In the sense of conjugation, we classify all the so-called pre-nil or nil maximal abelian subalgebr
Externí odkaz:
http://arxiv.org/abs/2206.07961
Autor:
Harako, Shuichi
An almost commutative algebra, or a $\rho$-commutative algebra, is an algebra which is graded by an abelian group and whose commutativity is controlled by a function called a commutation factor. The same way as a formulation of a supermanifold as a r
Externí odkaz:
http://arxiv.org/abs/2206.05709
Autor:
Khalili, Valiollah
We study the double derivation algebra $\mathcal{D}(\mathcal{L})$ of $n-$Hom Lie color algebra $\mathcal{L}$ and describe the relation between $\mathcal{D}(\mathcal{L})$ and the usual derivation Hom-Lie color algebra $Der(\mathcal{L}).$ We prove that
Externí odkaz:
http://arxiv.org/abs/2110.05844