Zobrazeno 1 - 10
of 41
pro vyhledávání: '"17B10, 18D10"'
We establish classical and categorical Howe dualities between the Lie superalgebras $\mathfrak{p}(m)$ and $\mathfrak{p}(n)$, for $m,n \geq 1$. We also describe a presentation via generators and relations as well as a Kostant $\mathbb{Z}$-form for the
Externí odkaz:
http://arxiv.org/abs/2109.03984
Publikováno v:
Advances Math. 375 (2020), 107331
We describe the semisimplification of the monoidal category of tilting modules for the algebraic group GL_n in characteristic p > 0. In particular, we compute the dimensions of the indecomposable tilting modules modulo p.
Comment: This version c
Comment: This version c
Externí odkaz:
http://arxiv.org/abs/2002.01900
Publikováno v:
Sel. Math. New Ser. 26, 74 (2020)
We show that any Abelian module category over the (degenerate or quantum) Heisenberg category satisfying suitable finiteness conditions may be viewed as a 2-representation over a corresponding Kac-Moody 2-category (and vice versa). This gives a way t
Externí odkaz:
http://arxiv.org/abs/1907.11988
We study induced model structures on Frobenius categories. In particular we consider the case where $\mathcal{C}$ is the category of comodules of a supercommutative Hopf algebra $A$ over a field $k$. Given a graded Hopf algebra quotient $A \to B$ sat
Externí odkaz:
http://arxiv.org/abs/1901.08966
Publikováno v:
Alg. Number Th. 14 (2020) 275-321
We introduce a diagrammatic monoidal category $\mathcal{H}eis_k(z,t)$ which we call the quantum Heisenberg category, here, $k \in \mathbb{Z}$ is "central charge" and $z$ and $t$ are invertible parameters. Special cases were known before: for central
Externí odkaz:
http://arxiv.org/abs/1812.04779
Let $\kappa$ be a commutative ring containing $2^{-1}$. In this paper, we prove the Comes-Kujawa's conjecture on a $\kappa$-basis of cyclotomic oriented Brauer-Clifford supercategory. As a by-product, we prove that the cyclotomic walled Brauer-Cliffo
Externí odkaz:
http://arxiv.org/abs/1801.09071
Autor:
Brown, Gordon C., Kujawa, Jonathan R.
We introduce web supercategories of type Q. We describe the structure of these categories and show they have a symmetric braiding. The main result of the paper shows these diagrammatically defined monoidal supercategories provide combinatorial models
Externí odkaz:
http://arxiv.org/abs/1801.00045
Autor:
Chirvasitu, Alexandru, Penkov, Ivan
Let $\mathbb{K}$ be an algebraically closed field of characteristic $0$. We study a monoidal category $\mathbb{T}_\alpha$ which is universal among all symmetric $\mathbb{K}$-linear monoidal categories generated by two objects $A$ and $B$ such that $A
Externí odkaz:
http://arxiv.org/abs/1710.00976
Autor:
Brundan, Jonathan
Publikováno v:
Alg. Comb. 1 (2018), 523-544
We revisit the definition of the Heisenberg category of central charge k. For central charge -1, this category was introduced originally by Khovanov, but with some additional cyclicity relations which we show here are unnecessary. For other negative
Externí odkaz:
http://arxiv.org/abs/1709.06589
Publikováno v:
Canad. J. Math. 71 (2019), 1061-1101
We introduce the oriented Brauer-Clifford and degenerate affine oriented Brauer-Clifford supercategories. These are diagrammatically defined monoidal supercategories which provide combinatorial models for certain natural monoidal supercategories of s
Externí odkaz:
http://arxiv.org/abs/1706.09999