Zobrazeno 1 - 6
of 6
pro vyhledávání: '"16T25, 20B35"'
Autor:
Crespo, Teresa
We consider relatively prime integer numbers $m$ and $n$ such that each group of order $mn$ has a normal subgroup of order $m$. We prove that each brace of size $mn$ is a semidirect product of a brace of size $m$ and a brace of size $n$. We further g
Externí odkaz:
http://arxiv.org/abs/2401.16892
Publikováno v:
J. Algebra 617 (2023), 317-339
We describe all left braces of size 8p for p an odd prime different from 3 or 7 and validate the number given by Bardakov, Neschadim and Yadav. We give a characterization for isomorphism classes of a semidirect product of left braces and then the des
Externí odkaz:
http://arxiv.org/abs/2205.04201
Publikováno v:
Forum Math. 33(5) (2021), 1083-1096
We present a construction of all finite indecomposable involutive solutions of the Yang-Baxter equation of multipermutational level at most 2 with abelian permutation group. As a consequence, we obtain a formula for the number of such solutions with
Externí odkaz:
http://arxiv.org/abs/2011.00229
Autor:
Bachiller, David, Cedo, Ferran
A new method to construct involutive non-degenerate set-theoretic solutions $(X^n,r^{(n)})$ of the Yang-Baxter equation from an initial solution $(X,r)$ is given. Furthermore, the permutation group $\mathcal{G}(X^n,r^{(n)})$ associated to the solutio
Externí odkaz:
http://arxiv.org/abs/1312.5142
Publikováno v:
Forum Mathematicum. 33:1083-1096
We present a construction of all finite indecomposable involutive solutions of the Yang-Baxter equation of multipermutational level at most 2 with abelian permutation group. As a consequence, we obtain a formula for the number of such solutions with
We describe all left braces of size 8p for p an odd prime different from 3 or 7 and validate the number given by Bardakov, Neschadim and Yadav. We give a characterization for isomorphism classes of a semidirect product of left braces and then the des
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::14ce012065658b72d9f9849bd94199f5
http://arxiv.org/abs/2205.04201
http://arxiv.org/abs/2205.04201