Zobrazeno 1 - 4
of 4
pro vyhledávání: '"16R99, 16W25"'
Autor:
Vitas, Daniel
Publikováno v:
Linear Algebra Appl. 626 (2021) 221-233
Let $F$ be an infinite field and let $f$ be a nonzero multilinear polynomial with coefficients in $F$. We prove that for every positive integer $d$ there exists a positive integer $s$ such that $f(M_{s}(F))$, the image of $f$ in $M_{s}(F)$, contains
Externí odkaz:
http://arxiv.org/abs/2108.00539
Autor:
Vitas, Daniel
Publikováno v:
Journal of Algebra, 565, 255-281 (2021)
Let $f(X_1,\dots, X_n)$ be a nonzero multilinear noncommutative polynomial. If $A$ is a unital algebra with a surjective inner derivation, then every element in $A$ can be written as $f(a_1,\dots,a_n)$ for some $a_i\in A$.
Comment: 21 pages, 0 f
Comment: 21 pages, 0 f
Externí odkaz:
http://arxiv.org/abs/2106.13140
Autor:
Daniel Vitas
Publikováno v:
Linear Algebra and its Applications. 626:221-233
Let $F$ be an infinite field and let $f$ be a nonzero multilinear polynomial with coefficients in $F$. We prove that for every positive integer $d$ there exists a positive integer $s$ such that $f(M_{s}(F))$, the image of $f$ in $M_{s}(F)$, contains
Autor:
Daniel Vitas
Publikováno v:
Journal of Algebra. 565:255-281
Let $f(X_1,\dots, X_n)$ be a nonzero multilinear noncommutative polynomial. If $A$ is a unital algebra with a surjective inner derivation, then every element in $A$ can be written as $f(a_1,\dots,a_n)$ for some $a_i\in A$.
Comment: 21 pages, 0 f
Comment: 21 pages, 0 f