Zobrazeno 1 - 10
of 324
pro vyhledávání: '"16G50"'
Autor:
Kostas, Panagiotis
This paper provides a systematic treatment of Gorenstein homological aspects for cleft extensions of rings. In particular, we investigate Goresnteinness, Gorenstein projective modules and singularity categories in the context of cleft extensions of r
Externí odkaz:
http://arxiv.org/abs/2409.07919
Autor:
Takashima, Yuta, Uehara, Hokuto
We establish a one-to-one correspondence between the singularity categories of rational double points and the simply-laced Dynkin graphs in arbitrary characteristic. This correspondence is well-known in characteristic zero since the rational double p
Externí odkaz:
http://arxiv.org/abs/2408.02532
An extension $B\subset A$ of finite dimensional algebras is bounded if the $B$-$B$-bimodule $A/B$ is $B$-tensor nilpotent, its projective dimension is finite and $\mathrm{Tor}_i^B(A/B, (A/B)^{\otimes_B j})=0$ for all $i, j\geq 1$. We show that for a
Externí odkaz:
http://arxiv.org/abs/2407.21480
Autor:
Honma, Takahiro, Usui, Satoshi
Let $\Lambda$ be an arbitrary monomial algebra. We investigate the stable category $\underline{\operatorname{Gproj}}^{\mathbb{Z}}\Lambda$ of graded Gorenstein-projective $\Lambda$-modules and the orbit category $\underline{\operatorname{Gproj}}^{\mat
Externí odkaz:
http://arxiv.org/abs/2407.04912
Autor:
Cruz, Tiago, Psaroudakis, Chrysostomos
In this paper, we prove a higher dimensional version of Auslander-Iyama-Solberg correspondence. Iyama and Solberg have shown a bijection between $n$-minimal Auslander-Gorenstein algebras and $n$-precluster tilting modules. If $A$ is an $n$-minimal Au
Externí odkaz:
http://arxiv.org/abs/2405.02736
Autor:
Berggren, Jonah, Serhiyenko, Khrystyna
A dimer model is a quiver with faces embedded into a disk. A consistent dimer model gives rise to a strand diagram, and hence to a positroid. The Gorenstein-projective module category over the completed boundary algebra of a dimer model was shown by
Externí odkaz:
http://arxiv.org/abs/2404.02886
Autor:
Tomonaga, Ryu
We investigate Cohen-Macaulay representations of quotient singularities $R:=l[[x_1,\cdots,x_d]]^G$ where $l$ is a field and $G$ is a finite group acting on $l[[x_1,\cdots,x_d]]$ as a ring, not necessarily as an $l$-algebra, with $|G|$ not divided by
Externí odkaz:
http://arxiv.org/abs/2403.19282
For any integer $n\ge 0$ and any ring $R$, \ $(\mathcal {PGF}_n, \ \mathcal P_n^\perp \cap \mathcal {PGF}^{\perp})$ proves to be a complete hereditary cotorsion pair in $R$-Mod, where $\mathcal {PGF}$ is the class of PGF modules, introduced by J. \v{
Externí odkaz:
http://arxiv.org/abs/2403.05232
A module over a ring $R$ is pure projective provided it is isomorphic to a direct summand of a direct sum of finitely presented modules. We develop tools for the classification of pure projective modules over commutative noetherian rings. In particul
Externí odkaz:
http://arxiv.org/abs/2311.05338
Autor:
Saito, Shunya
In this paper, we classify several subcategories of the category of coherent sheaves on a noetherian divisorial scheme (e.g. a quasi-projective scheme over a commutative noetherian ring). More precisely, we classify the torsionfree (resp. torsion) cl
Externí odkaz:
http://arxiv.org/abs/2304.06918