Zobrazeno 1 - 10
of 1 256
pro vyhledávání: '"15A48"'
We consider the \emph{exact} error correction of a noisy Euclidean distance matrix, EDM, where the elements are the squared distances between $n$ points in $R^d$. For our problem we are given two facts: (i) the embedding dimension, $d$, (ii) \emph{ex
Externí odkaz:
http://arxiv.org/abs/2406.15969
Autor:
Matveev, Sergey A., Tretyak, Ilya
We propose an efficient implementation of the numerical tensor-train (TT) based algorithm solving the multicomponent coagulation equation preserving the nonnegativeness of solution. Unnatural negative elements in the constructed approximation arise d
Externí odkaz:
http://arxiv.org/abs/2404.10898
In this paper, we extend and investigate the properties of the semi-smooth Newton method when applied to a general projection equation in finite dimensional spaces. We first present results concerning Clarke's generalized Jacobian of the projection o
Externí odkaz:
http://arxiv.org/abs/2401.04657
Autor:
Mondal, Samir, Sivakumar, K. C.
A real square matrix $A$ of order $n \times n~ (n \geq 3)$ is called an $F_0$-matrix, if it is a $Z$-matrix (off-diagonal entries nonpositive), all of whose principal submatrices of orders at most $n-2$ are $M$-matrices while there is at least one pr
Externí odkaz:
http://arxiv.org/abs/2305.05547
Autor:
Koshkin, Sergiy, Rodriguez, Daniel
Publikováno v:
Discrete Mathematics, Algorithms and Applications, 2022
We develop matrix cryptography based on linear recurrent sequences of any order that allows securing encryption against brute force and chosen plaintext attacks. In particular, we solve the problem of generalizing error detection and correction algor
Externí odkaz:
http://arxiv.org/abs/2206.11411
Publikováno v:
Russian Journal of Numerical Analysis and Mathematical Modelling 38, no. 2 (2023): 99-114
We propose new approximate alternating projection methods, based on randomized sketching, for the low-rank nonnegative matrix approximation problem: find a low-rank approximation of a nonnegative matrix that is nonnegative, but whose factors can be a
Externí odkaz:
http://arxiv.org/abs/2201.11154
Autor:
Mishra, Hemant K.
Publikováno v:
Linear Algebra and its Applications, 604:324-345, 2020
For every $2n \times 2n$ positive definite matrix $A$ there are $n$ positive numbers $d_1(A) \leq \ldots \leq d_n(A)$ associated with $A$ called the symplectic eigenvalues of $A.$ It is known that $d_m$ are continuous functions of $A$ but are not dif
Externí odkaz:
http://arxiv.org/abs/2007.10572
Autor:
Jain, Tanvi, Mishra, Hemant K.
Publikováno v:
Canadian Journal of Mathematics, 74(2), 457-485. 2022
Associated with every $2n\times 2n$ real positive definite matrix $A,$ there exist $n$ positive numbers called the symplectic eigenvalues of $A,$ and a basis of $\mathbb{R}^{2n}$ called the symplectic eigenbasis of $A$ corresponding to these numbers.
Externí odkaz:
http://arxiv.org/abs/2004.11024
N-matrices are real $n\times n$ matrices all of whose principal minors are negative. We provide (i) an $O(2^n)$ test to detect whether or not a given matrix is an N-matrix, and (ii) a characterization of N-matrices, leading to the recursive construct
Externí odkaz:
http://arxiv.org/abs/2001.06761
Autor:
Gowda, M. Seetharama
In an Euclidean Jordan algebra V of rank n, an element x is said to be majorized by an element y, if the corresponding eigenvalue vector of x is majorized by the eigenvalue vector of y in R^n. In this article, we describe pointwise majorization inequ
Externí odkaz:
http://arxiv.org/abs/1911.00579