Zobrazeno 1 - 10
of 14
pro vyhledávání: '"15A09, 47A55"'
Autor:
Du, Fapeng, Xue, Yifeng
In this paper, we investigate the invertibility of $I_Y+\delta TT^+$ when $T$ is a closed operator from $X$ to $Y$ with a generalized inverse $T^+$ and $\delta T$ is a linear operator whose domain contains $D(T)$ and range is contained in $D(T^+)$. T
Externí odkaz:
http://arxiv.org/abs/1209.1766
Autor:
Du, Fapeng, Xue, Yifeng
In this paper, we investigate the perturbation analysis of $A_{T,S}^{(2)}$ when $T,\,S$ and $A$ have some small perturbations on Hilbert spaces. We present the conditions that make the perturbation of $A_{T,S}^{(2)}$ is stable. The explicit represent
Externí odkaz:
http://arxiv.org/abs/1209.1767
Autor:
Du, Fapeng, Xue, Yifeng
In this paper, the perturbation problems of $A_{T,S}^{(2)}$ are considered. By virtue of the gap between subspaces, we derive the conditions that make the perturbation of $A_{T,S}^{(2)}$ is stable when $T,S$ and $A$ have suitable perturbations. At th
Externí odkaz:
http://arxiv.org/abs/1207.1776
Autor:
Adam, M., Maroulas, J.
In this paper, we present new results relating the numerical range of a matrix $A$ with generalized Levinger transformation $\mathcal{L}(A,\alpha,\beta) = \alphaH_A +\betaS_A$, where $H_A$ and $S_A$, are respectively the Hermitian and skew-hermitian
Externí odkaz:
http://arxiv.org/abs/0712.3883
Autor:
Du, Fapeng1 (AUTHOR) jsdfp@163.com, Nashed, M. Zuhair2 (AUTHOR)
Publikováno v:
Numerical Functional Analysis & Optimization. 2020, Vol. 41 Issue 14, p1728-1740. 13p.
Autor:
Yifeng Xue, Fapeng Du
In this paper, we investigate the invertibility of $I_Y+\delta TT^+$ when $T$ is a closed operator from $X$ to $Y$ with a generalized inverse $T^+$ and $\delta T$ is a linear operator whose domain contains $D(T)$ and range is contained in $D(T^+)$. T
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4cc2c1ca75950a840cfadb010dd5202e
http://arxiv.org/abs/1209.1766
http://arxiv.org/abs/1209.1766
Autor:
Yifeng Xue, Fapeng Du
In this paper, the perturbation problems of $A_{T,S}^{(2)}$ are considered. By virtue of the gap between subspaces, we derive the conditions that make the perturbation of $A_{T,S}^{(2)}$ is stable when $T,S$ and $A$ have suitable perturbations. At th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d633e565340db5e57fe321dec206aa5d
http://arxiv.org/abs/1207.1776
http://arxiv.org/abs/1207.1776
Autor:
Maria Adam, John Maroulas
In this paper, we present new results relating the numerical range of a matrix $A$ with generalized Levinger transformation $\mathcal{L}(A,\alpha,\beta) = \alphaH_A +\betaS_A$, where $H_A$ and $S_A$, are respectively the Hermitian and skew-hermitian
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b57ad2b4058549c2cd9e8d69c9c3f620
http://arxiv.org/abs/0712.3883
http://arxiv.org/abs/0712.3883
Autor:
Huang, Qianglian1 (AUTHOR) huangql@yzu.edu.cn, Chen, Saijie1 (AUTHOR), Guo, Zhirong2 (AUTHOR), Zhu, Lanping1 (AUTHOR)
Publikováno v:
International Journal of Computer Mathematics. Oct2019, Vol. 96 Issue 10, p1943-1956. 14p.
Publikováno v:
Linear & Multilinear Algebra; May2022, Vol. 70 Issue 7, p1252-1270, 19p