Zobrazeno 1 - 5
of 5
pro vyhledávání: '"14H50, 11G20"'
Autor:
Asgarli, Shamil, Ghioca, Dragos
We study plane curves over finite fields whose tangent lines at smooth $\mathbb{F}_q$-points together cover all the points of $\mathbb{P}^2(\mathbb{F}_q)$.
Comment: 13 pages
Comment: 13 pages
Externí odkaz:
http://arxiv.org/abs/2302.13420
Let $\mathcal{X}$ be a projective, irreducible, nonsingular algebraic curve over the finite field $\mathbb{F}_q$ with $q$ elements and let $|\mathcal{X}(\mathbb{F}_q)|$ and $g(\mathcal X)$ be its number of rational points and genus respectively. The
Externí odkaz:
http://arxiv.org/abs/2201.00602
Autor:
Borges, Herivelto, Fukasawa, Satoru
Publikováno v:
Finite Fields Appl. 61 (2020), 101579
We determine the distribution of Galois points for plane curves over a finite field of $q$ elements, which are Frobenius nonclassical for different powers of $q$. This family is an important class of plane curves with many remarkable properties. It c
Externí odkaz:
http://arxiv.org/abs/1807.11663
Autor:
SHAMIL ASGARLI, DRAGOS GHIOCA
We study plane curves over finite fields whose tangent lines at smooth $\mathbb{F}_q$-points together cover all the points of $\mathbb{P}^2(\mathbb{F}_q)$.
13 pages
13 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a62f9ba69da550aa500a4146649d6a53
http://arxiv.org/abs/2302.13420
http://arxiv.org/abs/2302.13420
Autor:
Herivelto Borges, Satoru Fukasawa
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We determine the distribution of Galois points for plane curves over a finite field of $q$ elements, which are Frobenius nonclassical for different powers of $q$. This family is an important class of plane curves with many remarkable properties. It c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::30d180b35a0356aea809577d0715df0d