Zobrazeno 1 - 10
of 10
pro vyhledávání: '"14H45, 13D02"'
Autor:
Li, Li
Ein, Niu and Park showed in [ENP20] that if the degree of the line bundle $L$ on a curve of genus $g$ is at least $2g+2k+1$, the $k$-th secant variety of the curve via the embedding defined by the complete linear system of $L$ is normal, projectively
Externí odkaz:
http://arxiv.org/abs/2305.02479
Autor:
Bopp, Christian, Hoff, Michael
For a smooth canonically embedded curve $C$ of genus $9$ together with a pencil $|L|$ of degree $6$, we study the relative canonical resolution of $C\subset X\subset \mathbb{P}^8$, where $X$ is the scroll swept out by the pencil $|L|$. We show that t
Externí odkaz:
http://arxiv.org/abs/1704.02753
We study projective surfaces $X \subset \mathbb{P}^r$ (with $r \geq 5$) of maximal sectional regularity and degree $d > r$, hence surfaces for which the Castelnuovo-Mumford regularity $\reg(\mathcal{C})$ of a general hyperplane section curve $\mathca
Externí odkaz:
http://arxiv.org/abs/1502.01770
We study projective varieties $X \subset \mathbb{P}^r$ of dimension $n \geq 2$, of codimension $c \geq 3$ and of degree $d \geq c + 3$ that are of maximal sectional regularity, i.e. varieties for which the Castelnuovo-Mumford regularity $\reg (\mathc
Externí odkaz:
http://arxiv.org/abs/1502.01769
We study projective surfaces $X \subset \mathbb{P}^r$ (with $r \geq 5$) of maximal sectional regularity and degree $d > r$, hence surfaces for which the Castelnuovo-Mumford regularity $\reg(C)$ of a general hyperplane section curve $C = X \cap \mathb
Externí odkaz:
http://arxiv.org/abs/1305.2355
Autor:
Manolache, Nicolae
One describes those double structures on rational normal curves which are defined scheme theoretically by quadratic equations and have linear syzygies, generalizing this way the double line in the plane
Comment: latex, 16 pages
Comment: latex, 16 pages
Externí odkaz:
http://arxiv.org/abs/math/0008082
Publikováno v:
Journal of Pure and Applied Algebra. 221:98-118
We study projective varieties $X \subset \mathbb{P}^r$ of dimension $n \geq 2$, of codimension $c \geq 3$ and of degree $d \geq c + 3$ that are of maximal sectional regularity, i.e. varieties for which the Castelnuovo-Mumford regularity $\reg (\mathc
Autor:
Christian Bopp, Michael Hoff
For a smooth canonically embedded curve $C$ of genus $9$ together with a pencil $|L|$ of degree $6$, we study the relative canonical resolution of $C\subset X\subset \mathbb{P}^8$, where $X$ is the scroll swept out by the pencil $|L|$. We show that t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68927e6f34288ec61452e56171b90cef
http://arxiv.org/abs/1704.02753
http://arxiv.org/abs/1704.02753
Publikováno v:
Taiwanese J. Math. 21, no. 3 (2017), 549-567
We study projective surfaces $X \subset \mathbb{P}^r$ (with $r \geq 5$) of maximal sectional regularity and degree $d > r$, hence surfaces for which the Castelnuovo-Mumford regularity $\reg(\mathcal{C})$ of a general hyperplane section curve $\mathca
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3187ed5f05535d2ee776f5756d3415a7
http://arxiv.org/abs/1502.01770
http://arxiv.org/abs/1502.01770
Autor:
Nicolae Manolache
One describes those double structures on rational normal curves which are defined scheme theoretically by quadratic equations and have linear syzygies, generalizing this way the double line in the plane
Comment: latex, 16 pages
Comment: latex, 16 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::21becd225495d57f42516b9d4391cd2b