Zobrazeno 1 - 10
of 1 381
pro vyhledávání: '"13D45"'
Autor:
Puthenpurakal, Tony J.
Let $K$ be a field and let $R = K[X_1, \ldots, X_m]$ with $m \geq 2$. Give $R$ the standard grading. Let $I$ be a homogeneous ideal of height $g$. Assume $1 \leq g \leq m -1$. Suppose $H^i_I(R) \neq 0$ for some $i \geq 0$. We show (1) $H^i_I(R)_n \ne
Externí odkaz:
http://arxiv.org/abs/2411.13090
Autor:
Puthenpurakal, Tony J.
Let $R$ be a regular ring of dimension $d$ containing a field $K$ of characteristic zero. If $E$ is an $R$-module let $Ass^i E = \{ Q \in \ Ass E \mid \ height Q = i \}$. Let $P$ be a prime ideal in $R$ of height $g$. We show that if $R/P$ satisfies
Externí odkaz:
http://arxiv.org/abs/2410.18493
Autor:
Puthenpurakal, Tony J.
Let $K$ be a field and let $S = K[X_1, \ldots, X_n]$. Let $I$ be a graded ideal in $S$ and let $M$ be a finitely generated graded $S$-module. We give upper bounds on the regularity of Koszul homology modules $H_i(I, M)$ for several classes of $I$ and
Externí odkaz:
http://arxiv.org/abs/2409.11840
Autor:
Ellers, Havi
The Hartshorne-Speiser-Lyubeznik number is a numerical invariant that can often be used to bound the Frobenius test exponent of positive characteristic rings. In this paper we look at positive characteristic semigroup rings generated by affine torsio
Externí odkaz:
http://arxiv.org/abs/2407.21731
Autor:
Murray, Taylor
Let $R$ be a standard graded, finitely generated algebra over a field, and let $M$ be a graded module over $R$ with all Bass numbers finite. Set $(-)^{(n)}$ to be the $n$-th Veronese functor. We compute the Bass numbers of $M^{(n)}$ over the ring $R^
Externí odkaz:
http://arxiv.org/abs/2407.17656
Autor:
Ganapathy, Karthik
We propose a method to unify various stability results about symmetric ideals in polynomial rings by stratifying related derived categories. We execute this idea for chains of $GL_n$-equivariant modules over an infinite field $k$ of positive characte
Externí odkaz:
http://arxiv.org/abs/2407.16071
Autor:
Lopez, Ricardo Garcia, Sabbah, Claude
We define a Hodge-theoretical refinement of the Lyubeznik numbers for local rings of complex algebraic varieties. We prove that these numbers are independent of the choices made in their definition and that, for the local ring of an isolated singular
Externí odkaz:
http://arxiv.org/abs/2407.10010
Autor:
Schenzel, Peter
Let $R$ denote a Noetherian ring and an ideal $J \subset R$ with $U = \operatorname{Spec R} \setminus V(J)$. For an $R$-module $M$ there is an isomorphism $\Gamma(U, \tilde{M}) \cong \varinjlim \operatorname{Hom}_R(J^n,M)$ known as Deligne's formula
Externí odkaz:
http://arxiv.org/abs/2406.18185
Autor:
Williams, David
We calculate the minimal attached primes of the local cohomology modules of the binomial edge ideals of block graphs. In particular, we obtain a combinatorial characterisation of which of these modules are non-vanishing. We also show that the main re
Externí odkaz:
http://arxiv.org/abs/2406.14368
Let $K$ be a field of characteristic 0 and $S=K[x_1,\ldots,x_m]/I$ be an affine domain. Consider $R=S_P$ where $P\in Spec(S)$ such that $R$ is regular. In this paper we construct a field $F$ which is contained in $R$ such that (1) The residue field o
Externí odkaz:
http://arxiv.org/abs/2406.05390