Zobrazeno 1 - 10
of 763
pro vyhledávání: '"13A30"'
Let $(A,\mathfrak{m})$ be a complete intersection ring of codimension $c\geq 2$ and dimension $d\geq 1$. Let $M$ be a finitely generated maximal Cohen-Macaulay $A$-module. Set $M_i=\text{Syz}^A_{i}(M)$. Let $e^{\mathfrak{m}}_i(M)$ be the $i$-th Hilbe
Externí odkaz:
http://arxiv.org/abs/2412.05860
We discuss how to understand the asymptotic resurgence number of a pair of graded families of ideals from combinatorial data of their associated convex bodies. When the families consist of monomial ideals, the convex bodies being considered are the N
Externí odkaz:
http://arxiv.org/abs/2412.04417
Autor:
Saloni, Kumari, Yadav, Anoot Kumar
Let $(A,\m)$ be a Cohen-Macaulay local ring of dimension $d\geq 3$, $I$ an $\m$-primary ideal and $\mathcal{I}=\{I_n\}_{n\geq 0}$ an $I$-admissible filtration. We establish bounds for the third Hilbert coefficient: (i) $e_3(\mathcal{I})\leq e_2(\math
Externí odkaz:
http://arxiv.org/abs/2409.14860
Let $E$ be a module of projective dimension one over $R=k[x_1,\ldots,x_d]$. If $E$ is presented by a matrix $\varphi$ with linear entries and the number of generators of $E$ is bounded locally up to codimension $d-1$, the Rees ring $\mathcal{R}(E)$ i
Externí odkaz:
http://arxiv.org/abs/2409.14238
In this paper, we investigate some properties of symbolic powers and symbolic Rees algebras of binomial edge ideals associated with some classes of block graphs. First, it is shown that symbolic powers of binomial edge ideals of pendant cliques graph
Externí odkaz:
http://arxiv.org/abs/2409.10137
Let $R=\oplus_{m\geq 0}R_m$ be a standard graded Noetherian domain over a field $R_0$ and $I\subseteq J$ be two graded ideals in $R$ such that $0<\mbox{height}\;I\leq \mbox{height}\;J
Externí odkaz:
http://arxiv.org/abs/2409.09346
Autor:
Puthenpurakal, Tony J.
Let $(A,\mathfrak{m})$ be an excellent normal local ring of dimension $d \geq 2$ with infinite residue field. Let $I$ be an $\mathfrak{m}$-primary ideal. Then the following assertions are equivalent: (i) The extended Rees algebra $A[It, t^{-1}]$ is $
Externí odkaz:
http://arxiv.org/abs/2408.05532
For an ideal $I$ in a Noetherian ring $R$, we introduce and study its conductor as a tool to explore the Rees algebra of $I$. The conductor of $I$ is an ideal $C(I)\subset R$ obtained from the defining ideals of the Rees algebra and the symmetric alg
Externí odkaz:
http://arxiv.org/abs/2407.06922
Autor:
Weaver, Matthew
Let $E$ be a module of projective dimension one over a Noetherian ring $R$ and consider its Rees algebra $\mathcal{R}(E)$. We study this ring as a quotient of the symmetric algebra $\mathcal{S}(E)$ and consider the ideal $\mathcal{A}$ defining this q
Externí odkaz:
http://arxiv.org/abs/2406.06766
We prove that, given a sufficiently functorial assignment from rings to big Cohen-Macaulay algebras $R \mapsto B$, that the associated big Cohen-Macaulay closure operation on ideals $I \mapsto I B \cap R$ necessarily satisfies the Brian\c{c}on-Skoda
Externí odkaz:
http://arxiv.org/abs/2406.02433