Zobrazeno 1 - 10
of 26
pro vyhledávání: '"12E20, 11T23"'
Let $\Fm$ be finite fields of order $q^m$, where $m\geq 2$ and $q$, a prime power. Given $\F$-affine hyperplanes $A_1,\ldots, A_m$ of $\Fm$ in general position, we study the existence of primitive element $\alpha$ of $\Fm$, such that $f(\alpha)$ is a
Externí odkaz:
http://arxiv.org/abs/2412.08455
Autor:
Nath, Shikhamoni, Basnet, Dhiren Kumar
Let $q$ be a positive integral power of some prime $p$ and $\mathbb{F}_{q^m}$ be a finite field with $q^m$ elements for some $m \in \mathbb{N}$. Here we establish a sufficient condition for the existence of a non-zero element $\epsilon \in \mathbb{F}
Externí odkaz:
http://arxiv.org/abs/2411.15568
Let $r$ be a positive divisor of $q-1$ and $f(x,y)$ a rational function of degree sum $d$ over $\mathbb{F}_q$ with some restrictions, where the degree sum of a rational function $f(x,y) = f_1(x,y)/f_2(x,y)$ is the sum of the degrees of $f_1(x,y)$ and
Externí odkaz:
http://arxiv.org/abs/2410.03836
This article investigates the existence of an $r$-primitive $k$-normal polynomial, defined as the minimal polynomial of an $r$-primitive $k$-normal element in $\mathbb{F}_{q^n}$, with a specified degree $n$ and two given coefficients over the finite
Externí odkaz:
http://arxiv.org/abs/2405.20760
Let $q$ be a positive integral power of some prime $p$ and $\mathbb{F}_{q^m}$ be a finite field with $q^m$ elements for some $m \in \mathbb{N}$. Here we establish a sufficient condition for the existence of primitive normal pairs of the type $(\epsil
Externí odkaz:
http://arxiv.org/abs/2405.19068
Let $q, n, m \in \mathbb{N}$ be such that $q$ is a prime power and $a, b \in \mathbb{F}$. In this article we establish a sufficient condition for the existence of a primitive normal pair $(\alpha, f(\alpha)) \in \mathbb{F}_{q^m}$ over $\mathbb{F}$ wi
Externí odkaz:
http://arxiv.org/abs/2405.05298
Given a prime power $q$ and a positive integer $n$, let $\mathbb{F}_{q^{n}}$ represents a finite extension of degree $n$ of the finite field ${\mathbb{F}_{q}}$. In this article, we investigate the existence of $m$ elements in arithmetic progression,
Externí odkaz:
http://arxiv.org/abs/2401.01819
Let $q, n, m \in \mathbb{N}$ such that $q$ is a prime power, $m \geq 3$ and $a \in \mathbb{F}$. We establish a sufficient condition for the existence of a primitive normal pair ($\alpha$, $f(\alpha)$) in $\mathbb{F}_{q^m}$ over $\mathbb{F}_{q}$ such
Externí odkaz:
http://arxiv.org/abs/2306.03426
Autor:
Choudhary, Aakash, Sharma, R. K.
Given $\mathbb{F}_{q^{n}}$, a field with $q^n$ elements, where $q $ is a prime power and $n$ is positive integer. For $r_1,r_2,m_1,m_2 \in \mathbb{N}$, $k_1,k_2 \in \mathbb{N}\cup \{0\}$, a rational function $F = \frac{F_1}{F_2}$ in $\mathbb{F}_{q}[x
Externí odkaz:
http://arxiv.org/abs/2304.08749
Let $\mathbb{F}_{q^n}$ be a finite field with $q^n$ elements. For a positive divisor $r$ of $q^n-1$, the element $\alpha \in \mathbb{F}_{q^n}^*$ is called \textit{$r$-primitive} if its multiplicative order is $(q^n-1)/r$. Also, for a non-negative int
Externí odkaz:
http://arxiv.org/abs/2211.02114