Zobrazeno 1 - 4
of 4
pro vyhledávání: '"11B68, 11F20"'
Autor:
Ilyuta, Gennadiy
We prove the simultaneous multiplication formulas for Apostol-Bernoulli polynomials and generalized Frobenius-Euler polynomials. These formulas contain Dedekind-Rademacher sums, Apostol-Dedekind sums and Fourier-Dedekind sums.
Comment: in Russia
Comment: in Russia
Externí odkaz:
http://arxiv.org/abs/2301.03255
Autor:
Dagli, M. Cihat, Can, Mümün
Publikováno v:
Funct. Approx. Comment. Math. 57(1) (2017) 7-20
In this paper, we derive a formula on the integral of products of the higher-order Euler polynomials. By the same way, similar relations are obtained for $l$ higher-order Bernoulli polynomials and $r$ higher-order Euler polynomials. Moreover, we esta
Externí odkaz:
http://arxiv.org/abs/1609.09336
Autor:
Bayad, Abdelmejid, Beck, Matthias
Publikováno v:
International Journal of Number Theory 10 (2014), 1321-1335
The \emph{Barnes $\zeta$-function} is \[ \zeta_n (z, x; \a) := \sum_{\m \in \Z_{\ge 0}^n} \frac{1}{\left(x + m_1 a_1 + \dots + m_n a_n \right)^z} \] defined for $\Re(x) > 0$ and $\Re(z) > n$ and continued meromorphically to $\C$. Specialized at negat
Externí odkaz:
http://arxiv.org/abs/1301.7097
Autor:
Muhammet Cihat Dagli, Mümün Can
Publikováno v:
Funct. Approx. Comment. Math. 57, no. 1 (2017), 7-20
In this paper, we derive a formula on the integral of products of the higher-order Euler polynomials. By the same way, similar relations are obtained for $l$ higher-order Bernoulli polynomials and $r$ higher-order Euler polynomials. Moreover, we esta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3049bc14b23eaad7991e1865f8ca5484
http://arxiv.org/abs/1609.09336
http://arxiv.org/abs/1609.09336