Zobrazeno 1 - 10
of 1 954
pro vyhledávání: '"ℋℋ–Fejér"'
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-11 (2024)
Abstract The Hermite–Hadamard–Fejér-type inequality is an effective utensil for examining upper and lower estimations of the integrals of convex functions. In this study, the power mean inequality and Hölder inequality are employed. The outcome
Externí odkaz:
https://doaj.org/article/151a253929c1447bb7cf88cdacfc51c2
Autor:
Jleli Mohamed, Samet Bessem
Publikováno v:
Demonstratio Mathematica, Vol 57, Iss 1, Pp 669-680 (2024)
In this study, we introduce the notion of α\alpha -convex sequences which is a generalization of the convexity concept. For this class of sequences, we establish a discrete version of Fejér inequality without imposing any symmetry condition. In our
Externí odkaz:
https://doaj.org/article/4adcaf2180594cf1b7e046b70cfe2e4a
Autor:
Bombardelli Mea, Varošanec Sanja
Publikováno v:
Annales Mathematicae Silesianae, Vol 38, Iss 2, Pp 195-213 (2024)
We present Hermite–Hadamard–Fejér type inequalities for strongly MφMψ -convex functions. Some refinements of them and bounds for the integral mean of the product of two functions are also obtained.
Externí odkaz:
https://doaj.org/article/777192363ebf40e0a431b5a25c8d4e1e
Autor:
Latif Muhammad Amer
Publikováno v:
Demonstratio Mathematica, Vol 57, Iss 1, Pp 82-215 (2024)
In this study, some mappings related to the Fejér-type inequalities for GAGA-convex functions are defined over the interval [0,1]{[}0,1]. Some Fejér-type inequalities for GAGA-convex functions are proved using these mappings. Properties of these ma
Externí odkaz:
https://doaj.org/article/87e403b5a48d403a86e537ede871835e
Autor:
Jleli Mohamed, Samet Bessem
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp 176-186 (2024)
For a given sequence a=(a1,…,an)∈Rna=\left({a}_{1},\ldots ,{a}_{n})\in {{\mathbb{R}}}^{n}, our aim is to obtain an estimate of En≔a1+an2−1n∑i=1nai{E}_{n}:= \left|\hspace{-0.33em},\frac{{a}_{1}+{a}_{n}}{2}-\frac{1}{n}{\sum }_{i=1}^{n}{a}_{i}
Externí odkaz:
https://doaj.org/article/bb98c3be0c4646529df3103eb0849984
Publikováno v:
Demonstratio Mathematica, Vol 57, Iss 1, Pp 171-215 (2024)
For μ∈C1(I)\mu \in {C}^{1}\left(I), μ>0\mu \gt 0, and λ∈C(I)\lambda \in C\left(I), where II is an open interval of R{\mathbb{R}}, we consider the set of functions f∈C2(I)f\in {C}^{2}\left(I) satisfying the second-order differential inequalit
Externí odkaz:
https://doaj.org/article/75df8b0a32b24f26bc18cd574edc3ff2
Publikováno v:
AIMS Mathematics, Vol 9, Iss 6, Pp 16061-16092 (2024)
Fractional calculus and convex inequalities combine to form a comprehensive mathematical framework for understanding and analyzing a variety of problems. This note develops Hermite-Hadamard, Fejér, and Pachpatte type integral inequalities within pse
Externí odkaz:
https://doaj.org/article/269d065136384af1862c7556ac500e43
Autor:
Jleli Mohamed, Samet Bessem
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp 1-82 (2024)
We establish weighted Hermite-Hadamard-type inequalities for some classes of differentiable functions without assuming any symmetry property on the weight function. Next, we apply our obtained results to the approximation of some classes of weighted
Externí odkaz:
https://doaj.org/article/9c563f21d198423ca69fea8e253d1a61
Autor:
Olga Rovenska
Publikováno v:
Frontiers in Applied Mathematics and Statistics, Vol 10 (2024)
The article is devoted to the problem of approximation of classes of periodic functions by rectangular linear means of Fourier series. Asymptotic equalities are found for upper bounds of deviations in the uniform metric of rectangular Fejér means on
Externí odkaz:
https://doaj.org/article/780cf03200714b9291aa27f25aa84fd6
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.