Zobrazeno 1 - 10
of 105
pro vyhledávání: '"η-Ricci soliton"'
Autor:
Shahroud Azami
Publikováno v:
AUT Journal of Mathematics and Computing, Vol 5, Iss 1, Pp 19-26 (2024)
In this paper, we investigate f-Kenmotsu 3-dimensional manifolds admitting generalized η-Ricci solitons with respect to the Schouten-van Kampen connection. We provide an example of generalized η-Ricci solitons with respect to the Schouten-van Kampe
Externí odkaz:
https://doaj.org/article/6b5e4b5567404c239f3d080b844c404a
Publikováno v:
Axioms, Vol 13, Iss 11, p 753 (2024)
This paper focuses on some geometrical and physical properties of a conformal η-Ricci soliton (Cη-RS) on a four-dimension Lorentzian Para-Sasakian (LP-S) manifold. The first section presents an introduction to Cη-RS on LP-S manifolds, followed by
Externí odkaz:
https://doaj.org/article/5f813f5e838d4ab1909615bb2d1d05f8
Autor:
Mehmet Atçeken, Tuğba Mert
Publikováno v:
Universal Journal of Mathematics and Applications, Vol 6, Iss 2, Pp 43-52 (2023)
In this paper, we consider Lorentz generalized Sasakian space forms admitting almost $\eta-$Ricci solitons in some curvature tensors. Ricci pseudosymmetry concepts of \ Lorentz generalized Sasakian space forms admitting $\eta-$Ricci soliton have intr
Externí odkaz:
https://doaj.org/article/963e00acd0a14ceeb869acb95f66b016
Autor:
Mehmet Atçeken, Tuğba Mert
Publikováno v:
Communications in Advanced Mathematical Sciences, Vol 6, Iss 1, Pp 44-59 (2023)
In this paper, we consider pseudosymmetric Lorentz Sasakian space forms admitting almost $\eta-$Ricci solitons in some curvature tensors. Ricci pseudosymmetry concepts of Lorentz Sasakian space forms admits $\eta-$Ricci soliton have introduced accord
Externí odkaz:
https://doaj.org/article/f690a8374b894dbd96e0eb73c4fe9ead
Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry
Publikováno v:
Open Mathematics, Vol 20, Iss 1, Pp 574-589 (2022)
We prove that if an η\eta -Einstein para-Kenmotsu manifold admits a conformal η\eta -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal η\eta -Ricci soliton is Einstein if its potential vector field VV is
Externí odkaz:
https://doaj.org/article/47c92c2f9b984806b366ac34491c0713
Publikováno v:
Annals of the West University of Timisoara: Mathematics and Computer Science, Vol 58, Iss 1, Pp 76-84 (2022)
The object of the present article is to study the notion of η-Einstein-like LP-Sasakian manifolds admitting η-Ricci soliton. Furthermore, we study the η-Ricci soliton on LP-Sasakian manifolds when the potential vector field V is point-wise colline
Externí odkaz:
https://doaj.org/article/dbe65c8681ba4ad2a8079830e2e7bd67
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
AIMS Mathematics, Vol 7, Iss 4, Pp 5408-5430 (2022)
The present paper is to deliberate the class of ϵ-Kenmotsu manifolds which admits conformal η-Ricci soliton. Here, we study some special types of Ricci tensor in connection with the conformal η-Ricci soliton of ϵ-Kenmotsu manifolds. Moving furthe
Externí odkaz:
https://doaj.org/article/039e6542148d40f9975ca3f3ba5b6091
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Mathematics, Vol 11, Iss 21, p 4452 (2023)
A solution to an evolution equation that evolves along symmetries of the equation is called a self-similar solution or soliton. In this manuscript, we present a study of η-Ricci solitons (η-RS) for an interesting manifold called the (ε)-Kenmotsu m
Externí odkaz:
https://doaj.org/article/a7469852b00f428c8df2cb09946206ad