Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Štrekelj, Tea"'
This expository article gives a survey of matrix convex sets, a natural generalization of convex sets to the noncommutative (dimension-free) setting, with a focus on their extreme points. Mirroring the classical setting, extreme points play an import
Externí odkaz:
http://arxiv.org/abs/2405.07924
An $n\times n$ symmetric matrix $A$ is copositive if the quadratic form $x^TAx$ is nonnegative on the nonnegative orthant. The cone of copositive matrices strictly contains the cone of completely positive matrices, i.e., all matrices of the form $BB^
Externí odkaz:
http://arxiv.org/abs/2305.16224
In this article the operator trace function $ \Lambda_{r,s}(A)[K, M] := {\operatorname{tr}}(K^*A^r M A^r K)^s$ is introduced and its convexity and concavity properties are investigated. This function has a direct connection to several well-studied op
Externí odkaz:
http://arxiv.org/abs/2109.11528
Autor:
Klep, Igor, Štrekelj, Tea
Publikováno v:
J. Funct. Anal. 283 (2022) 109601, 55pp
This article investigates the notions of exposed points and (exposed) faces in the matrix convex setting. Matrix exposed points in finite dimensions were first defined by Kriel in 2019. Here this notion is extended to matrix convex sets in infinite-d
Externí odkaz:
http://arxiv.org/abs/2108.01611
Autor:
Klep, Igor, Štrekelj, Tea
Publikováno v:
In Journal of Functional Analysis 1 October 2022 283(7)
Publikováno v:
In Linear Algebra and Its Applications 15 June 2022 643:218-234
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Štrekelj, Tea
Teorijo konveksnih množic v Evklidskih prostorih lahko na naraven način prestavimo v nekomutativno okolje matričnih prostorov. V magistrski nalogi predstavimo matrične konveksne množice, njihove lastnosti in primere, obravnavamo matrične ekstre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3505::f5552ca3753c9896d4551599aec149eb
https://hdl.handle.net/20.500.12556/RUL-119287
https://hdl.handle.net/20.500.12556/RUL-119287
Autor:
Štrekelj, Tea
Schwarzova lema se smatra za eno od elementarnih in najlepših lastnosti holomorfnih funkcij iz enotskega diska nazaj v enotski disk. Tudi njen dokaz uporablja zgolj osnovna sredstva. Odgovori pa nam na kratko in jedrnato vprašanje, kako hitro lahko
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3505::c96f008292fe2b4ec273167f67d91318
https://hdl.handle.net/20.500.12556/RUL-103681
https://hdl.handle.net/20.500.12556/RUL-103681