Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Škreb, Kristina Ana"'
We find the exact Bellman function associated to the level-sets of sparse operators acting on characteristic functions.
Externí odkaz:
http://arxiv.org/abs/2403.06751
We present a fundamentally new proof of the dimensionless Lp boundedness of the Bakry Riesz vector on manifolds with bounded geometry. Our proof has the significant advantage that it allows for a much stronger conclusion than previous arguments, name
Externí odkaz:
http://arxiv.org/abs/2211.10762
Autor:
Kovač, Vjekoslav, Škreb, Kristina Ana
Publikováno v:
J. Funct. Anal. 284 (2023), Issue 9, Article 109884, 32 pp
We prove a bi-sublinear embedding for semigroups generated by non-smooth complex-coefficient elliptic operators in divergence form and for certain mutually dual pairs of Orlicz-space norms. This generalizes a result by Carbonaro and Dragi\v{c}evi\'{c
Externí odkaz:
http://arxiv.org/abs/2110.15812
Publikováno v:
In Advances in Mathematics 15 October 2023 431
We prove failure of the natural formulation of a matrix weighted bilinear Carleson embedding theorem, featuring a matrix valued Carleson sequence as well as products of norms for the embedding. We show that assuming an A2 weight is also not sufficien
Externí odkaz:
http://arxiv.org/abs/1906.08715
Autor:
Škreb, Kristina Ana
In this paper we study cubic averages with respect to $d$ general commuting transformations and prove quantitative results on their convergence in the norm. The approach we are using is based on estimates for certain entangled multilinear singular in
Externí odkaz:
http://arxiv.org/abs/1903.04370
Autor:
Kovač, Vjekoslav, Škreb, Kristina Ana
Publikováno v:
In Journal of Functional Analysis 1 May 2023 284(9)
Autor:
Kovač, Vjekoslav, Škreb, Kristina Ana
Publikováno v:
Probab. Math. Statist. 38 (2018), 459-479
We give an explicit formula for one possible Bellman function associated with the $L^p$ boundedness of dyadic paraproducts regarded as bilinear operators or trilinear forms. Then we apply the same Bellman function in various other settings, to give s
Externí odkaz:
http://arxiv.org/abs/1609.02895
Publikováno v:
Ergodic Theory Dynam. Systems 39 (2019), 658-688
We study double ergodic averages with respect to two general commuting transformations and establish a sharp quantitative result on their convergence in the norm. We approach the problem via real harmonic analysis, using recently developed methods fo
Externí odkaz:
http://arxiv.org/abs/1603.00631
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.