Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Škrabuľáková Erika"'
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 36, Iss 1, Pp 141-151 (2016)
A graph G = (V, E) is called 1-planar if it admits a drawing in the plane such that each edge is crossed at most once. In this paper, we study bipartite 1-planar graphs with prescribed numbers of vertices in partite sets. Bipartite 1-planar graphs ar
Externí odkaz:
https://doaj.org/article/468b1f7c1b194ab4a4ea4713f3037831
Autor:
Stehlíková, Beáta1 (AUTHOR) beata.stehlikova@tuke.sk, Fecková Škrabuľáková, Erika1 (AUTHOR) gabriela.bogdanovska@tuke.sk, Bogdanovská, Gabriela1 (AUTHOR), Fecko, Matúš2 (AUTHOR) matusfecko613@gmail.com
Publikováno v:
Energies (19961073). Jun2024, Vol. 17 Issue 12, p3032. 13p.
The Thue colouring of a graph is a colouring such that the sequence of vertex colours of any path of even and finite length in $G$ is non-repetitive. The change in the Thue number, $\pi(G)$, as edges are iteratively removed from a graph $G$ is studie
Externí odkaz:
http://arxiv.org/abs/1601.02914
Autor:
Škrabuľáková, Erika
We say that a vertex colouring $\varphi$ of a graph $G$ is nonrepetitive if there is no positive integer $n$ and a path on $2n$ vertices $v_{1}\ldots v_{2n}$ in $G$ such that the associated sequence of colours $\varphi(v_{1})\ldots\varphi(v_{2n})$ sa
Externí odkaz:
http://arxiv.org/abs/1508.02559
A graph $G=(V,E)$ is called 1-planar if it admits a drawing in the plane such that each edge is crossed at most once. In this paper, we study bipartite $1$-planar graphs with prescribed numbers of vertices in partite sets. Bipartite 1-planar graphs a
Externí odkaz:
http://arxiv.org/abs/1501.00176
A sequence is called non-repetitive if no of its subsequences forms a repetition (a sequence $r_1,r_2,\dots,r_{2n}$ such that $r_i=r_{n+i}$ for all $1\leq i \leq n$). Let $G$ be a graph whose vertices are coloured. A colouring $\varphi$ of the graph
Externí odkaz:
http://arxiv.org/abs/1409.5154
Autor:
Schreyer, Jens, Škrabuľáková, Erika
Publikováno v:
European Journal of Mathematics, Volume 1, Issue 1, March 2015, pp. 186-197
A total colouring of a graph is a colouring of its vertices and edges such that no two adjacent vertices or edges have the same colour and moreover, no edge coloured $c$ has its endvertex coloured $c$ too. A weak total Thue colouring of a graph $G$ i
Externí odkaz:
http://arxiv.org/abs/1309.3164
Let $G$ be a plane graph. A vertex-colouring $\varphi$ of $G$ is called {\em facial non-repetitive} if for no sequence $r_1 r_2 \dots r_{2n}$, $n\geq 1$, of consecutive vertex colours of any facial path it holds $r_i=r_{n+i}$ for all $i=1,2,\dots,n$.
Externí odkaz:
http://arxiv.org/abs/1308.5128
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Škrabuľáková, Erika Fecková1 erika.feckova.skrabulakova@tuke.sk, Grešová, Elena1 elena.gresova@tuke.sk
Publikováno v:
Scientific Papers of the University of Pardubice. Series D, Faculty of Economics & Administration. 2019, Vol. 27 Issue 45, p152-160. 9p.