Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Škrabuľáková Erika"'
Autor:
Stehlíková, Beáta1 (AUTHOR) beata.stehlikova@tuke.sk, Fecková Škrabuľáková, Erika1 (AUTHOR) gabriela.bogdanovska@tuke.sk, Bogdanovská, Gabriela1 (AUTHOR), Fecko, Matúš2 (AUTHOR) matusfecko613@gmail.com
Publikováno v:
Energies (19961073). Jun2024, Vol. 17 Issue 12, p3032. 13p.
Publikováno v:
Geographica Pannonica, Vol 26, Iss 1, Pp 13-29 (2022)
In the paper we evaluate the quality of life in European Union countries. The introductory database is made up of 19 variables which, in our view, appropriately capture numerous spheres of human life. The reference date for this data, taken from the
Externí odkaz:
https://doaj.org/article/56f1b75ced964cdc84be0fdfe4818dda
The Thue colouring of a graph is a colouring such that the sequence of vertex colours of any path of even and finite length in $G$ is non-repetitive. The change in the Thue number, $\pi(G)$, as edges are iteratively removed from a graph $G$ is studie
Externí odkaz:
http://arxiv.org/abs/1601.02914
Autor:
Škrabuľáková, Erika
We say that a vertex colouring $\varphi$ of a graph $G$ is nonrepetitive if there is no positive integer $n$ and a path on $2n$ vertices $v_{1}\ldots v_{2n}$ in $G$ such that the associated sequence of colours $\varphi(v_{1})\ldots\varphi(v_{2n})$ sa
Externí odkaz:
http://arxiv.org/abs/1508.02559
A graph $G=(V,E)$ is called 1-planar if it admits a drawing in the plane such that each edge is crossed at most once. In this paper, we study bipartite $1$-planar graphs with prescribed numbers of vertices in partite sets. Bipartite 1-planar graphs a
Externí odkaz:
http://arxiv.org/abs/1501.00176
A sequence is called non-repetitive if no of its subsequences forms a repetition (a sequence $r_1,r_2,\dots,r_{2n}$ such that $r_i=r_{n+i}$ for all $1\leq i \leq n$). Let $G$ be a graph whose vertices are coloured. A colouring $\varphi$ of the graph
Externí odkaz:
http://arxiv.org/abs/1409.5154
Autor:
Schreyer, Jens, Škrabuľáková, Erika
Publikováno v:
European Journal of Mathematics, Volume 1, Issue 1, March 2015, pp. 186-197
A total colouring of a graph is a colouring of its vertices and edges such that no two adjacent vertices or edges have the same colour and moreover, no edge coloured $c$ has its endvertex coloured $c$ too. A weak total Thue colouring of a graph $G$ i
Externí odkaz:
http://arxiv.org/abs/1309.3164
Let $G$ be a plane graph. A vertex-colouring $\varphi$ of $G$ is called {\em facial non-repetitive} if for no sequence $r_1 r_2 \dots r_{2n}$, $n\geq 1$, of consecutive vertex colours of any facial path it holds $r_i=r_{n+i}$ for all $i=1,2,\dots,n$.
Externí odkaz:
http://arxiv.org/abs/1308.5128
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 36, Iss 1, Pp 141-151 (2016)
A graph G = (V, E) is called 1-planar if it admits a drawing in the plane such that each edge is crossed at most once. In this paper, we study bipartite 1-planar graphs with prescribed numbers of vertices in partite sets. Bipartite 1-planar graphs ar
Externí odkaz:
https://doaj.org/article/468b1f7c1b194ab4a4ea4713f3037831
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.