Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Šebestová, Ivana"'
Autor:
Šebestová, Ivana
Publikováno v:
In Computers and Mathematics with Applications 15 November 2024 174:204-218
Autor:
Vejchodský, Tomáš, Šebestová, Ivana
We provide two new methods for computing lower bounds of eigenvalues of symmetric elliptic second-order differential operators with mixed boundary conditions of Dirichlet, Neumann, and Robin type. The methods generalize ideas of Weinstein's and Kato'
Externí odkaz:
http://arxiv.org/abs/1705.10180
Autor:
Šebestová, Ivana
This thesis is concerned with several issues of a posteriori error estimates for linear problems. In its first part error estimates for the heat conduction equation discretized by the backward Euler method in time and discontinuous Galerkin method in
Externí odkaz:
http://www.nusl.cz/ntk/nusl-326160
Autor:
Sebestova, Ivana, Vejchodsky, Tomas
We generalize and analyse the method for computing lower bounds of the principal eigenvalue proposed in our previous paper (I. Sebestova, T. Vejchodsky, SIAM J. Numer. Anal. 2014). This method is suitable for symmetric elliptic eigenvalue problems wi
Externí odkaz:
http://arxiv.org/abs/1606.01739
We present an a posteriori estimator of the error in the L^2-norm for the numerical approximation of the Maxwell's eigenvalue problem by means of N\'ed\'elec finite elements. Our analysis is based on a Helmholtz decomposition of the error and on a su
Externí odkaz:
http://arxiv.org/abs/1602.00675
Autor:
Šebestová, Ivana
The thesis deals with a posteriori error estimates of the discontinuous Galerkin aproximations of di®usion problems. It has two main parts. In the rst one we describe di®erent approaches leading to a posteriori error estimate for the Poisson equati
Externí odkaz:
http://www.nusl.cz/ntk/nusl-282627
Autor:
Šebestová, Ivana, Vejchodský, Tomáš
Publikováno v:
SIAM J. Numer. Anal. 52-1 (2014), pp. 308-329
We present a general numerical method for computing guaranteed two-sided bounds for principal eigenvalues of symmetric linear elliptic differential operators. The approach is based on the Galerkin method, on the method of a priori-a posteriori inequa
Externí odkaz:
http://arxiv.org/abs/1303.7416
Autor:
ŠEBESTOVÁ, IVANA, VEJCHODSKÝ, TOMÁŠ
Publikováno v:
SIAM Journal on Numerical Analysis, 2014 Jan 01. 52(1), 308-329.
Externí odkaz:
http://www.jstor.org/stable/24511634
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.