Zobrazeno 1 - 10
of 64
pro vyhledávání: '"ŞİAR, ZAFER"'
Autor:
Şiar, Zafer, Keskin, Refik
Let k>=2 and let (Q_{n}^{(k)})_{n>=2-k} be the k-generalized Pell sequence defined by Q_{n}^{(k)}=2Q_{n-1}^{(k)}+Q_{n-2}^{(k)}+...+Q_{n-k}^{(k)} for n>=2 with initial conditions Q_{-(k-2)}^{(k)}=Q_{-(k-3)}^{(k)}=...=Q_{-1}^{(k)}=0, Q_{0}^{(k)}=2,Q_{1
Externí odkaz:
http://arxiv.org/abs/2209.04190
Autor:
Keskin, Refik, Şiar, Zafer
Let (a,b,c) be a primitive Pythagorean triple, i.e., a^{2}+b^{2}=c^{2} with gcd(a,b,c)=1, a even and b odd. Terai's conjecture says that the Diophantine equation x^{2}+b^{y}=c^{z} has only the positive integer solutions (x,y,z)=(a,2,2). In this study
Externí odkaz:
http://arxiv.org/abs/2105.14814
Autor:
Şiar, Zafer, Keskin, Refik
Let $k\geq 2$ and let $(P_{n}^{(k)})_{n\geq 2-k}$ be $k$-generalized Pell sequence defined by \begin{equation*}P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+...+P_{n-k}^{(k)}\end{equation*} for $n\geq 2$ with initial conditions \begin{equation*}P_{-(k-2)}
Externí odkaz:
http://arxiv.org/abs/2009.13387
Autor:
Şiar, Zafer
In this paper, we prove that there is no x>=4 such that the difference of x-th powers of two consecutive Fibonacci numbers greater than 0 is a Lucas number.
Externí odkaz:
http://arxiv.org/abs/2002.03783
Autor:
Şiar, Zafer, Keskin, Refik
In this paper, we consider the equation $(a^n-2^{m})(b^n-2^{m})=x^2$. By assuming the abc conjecture is true, in [8], Luca and Walsh gave a theorem, which implies that the above equation has only finitely many solutions $n,x$ if a and b are different
Externí odkaz:
http://arxiv.org/abs/1801.04770
Autor:
Şiar, Zafer, Keskin, Refik
In this paper, we solve Diophantine equation in the tittle in nonnegative integers m,n, and a. In order to prove our result, we use lower bounds for linear forms in logarithms and and a version of the Baker-Davenport reduction method in diophantine a
Externí odkaz:
http://arxiv.org/abs/1712.10138
Autor:
ŞİAR, Zafer1, KESKİN, Refik2
Publikováno v:
Turkish Journal of Mathematics. 2022, Vol. 46 Issue 8, p3083-3094. 12p.
Autor:
ERDURAN, İbrahim1 ierduran01@gmail.com, ŞİAR, Zafer1 zsiar@bingol.edu.tr
Publikováno v:
Sakarya University Journal of Science (SAUJS) / Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Jun2022, Vol. 26 Issue 3, p488-492. 5p.
Autor:
ERDURAN, İbrahim1 ierduran01@gmail.com, ŞİAR, Zafer1 zsiar@bingol.edu.tr
Publikováno v:
Sakarya University Journal of Science (SAUJS) / Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Jun2022, Vol. 26 Issue 3, p488-492. 5p.
Autor:
Şiar, Zafer1 (AUTHOR), Keskin, Refik2 (AUTHOR) rkeskin@sakarya.edu.tr, Erduvan, Fatih2 (AUTHOR)
Publikováno v:
Bulletin of the Brazilian Mathematical Society. Dec2021, Vol. 52 Issue 4, p1025-1040. 16p.