Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Łukasz Kubat"'
Publikováno v:
Transactions of the American Mathematical Society. 372:7191-7223
For a finite involutive non-degenerate solution $(X,r)$ of the Yang--Baxter equation it is known that the structure monoid $M(X,r)$ is a monoid of I-type, and the structure algebra $K[M(X,r)]$ over a field $K$ share many properties with commutative p
One of the main results stated in Theorem 4.4 of our article, which appears in Trans. Amer. Math. Soc. 372 (2019), no. 10, 7191–7223, is that the structure algebra K [ M ( X , r ) ] K[M(X,r)] , over a field K K , of a finite bijective left non-dege
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7feb9d2ed06431dcd44d7f479266a3d3
https://hdl.handle.net/20.500.14017/331717d7-c765-4cd8-969b-a7f257871dda
https://hdl.handle.net/20.500.14017/331717d7-c765-4cd8-969b-a7f257871dda
A set-theoretic solution of the Pentagon Equation on a non-empty set $S$ is a map $s\colon S^2\to S^2$ such that $s_{23}s_{13}s_{12}=s_{12}s_{23}$, where $s_{12}=s\times\mathrm{id}$, $s_{23}=\mathrm{id}\times s$ and $s_{13}=(\tau\times\mathrm{id})(\m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::257519808362d40177490ed9f88bc712
http://arxiv.org/abs/2004.04028
http://arxiv.org/abs/2004.04028
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We introduce strong left ideals of skew braces and prove that they produce non-trivial decomposition of set-theoretic solutions of the Yang-Baxter equation. We study factorization of skew left braces through strong left ideals and we prove analogs of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5e4b97670ddf28987c0ff719f502c3e7
https://doi.org/10.1007/s00208-019-01909-1
https://doi.org/10.1007/s00208-019-01909-1
Autor:
Łukasz Kubat, Jan Okniński
Publikováno v:
Vrije Universiteit Brussel
A finite Grobner-Shirshov basis is constructed for the plactic algebra of rank 3 over a field K. It is also shown that plactic algebras of rank exceeding 3 do not have finite Grobner-Shirshov bases associated to the natural degree-lexicographic order
Autor:
Łukasz Kubat, Jan Okniński
Publikováno v:
Vrije Universiteit Brussel
The structure of the algebra K[M] of the plactic monoid M of rank 3 over a field K is studied. The minimal prime ideals of K[M] are described. There are only two such ideals and each of them is a principal ideal determined by a homogeneous congruence
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::37467fa4408511b67bc5ce7fdc11645a
https://cris.vub.be/en/publications/plactic-algebra-of-rank-3(9028fa74-fbbd-4ff3-ab3c-8cdbb04cc9a9).html
https://cris.vub.be/en/publications/plactic-algebra-of-rank-3(9028fa74-fbbd-4ff3-ab3c-8cdbb04cc9a9).html
Publikováno v:
Vrije Universiteit Brussel
National Information Processing Institute
National Information Processing Institute
Irreducible representations of the plactic monoid M of rank four are studied. Certain concrete families of simple modules over the plactic algebra K [ M ] over a field K are constructed. It is shown that the Jacobson radical J ( K [ M ] ) of K [ M ]
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::610eb5c7aaf2f9cfafd9069074765e32
https://cris.vub.be/en/publications/irreducible-representations-of-the-plactic-algebra-of-rank-four(14906d60-4bec-4672-9c33-e1f504c47fe1).html
https://cris.vub.be/en/publications/irreducible-representations-of-the-plactic-algebra-of-rank-four(14906d60-4bec-4672-9c33-e1f504c47fe1).html
Autor:
Jan Okniński, Łukasz Kubat
Publikováno v:
Vrije Universiteit Brussel
All irreducible representations of the Chinese monoid $C_n$, of any rank $n$, over a nondenumerable algebraically closed field $K$, are constructed. It turns out that they have a remarkably simple form and they can be built inductively from irreducib
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::165971ce86572272904e0056061031b5
https://cris.vub.be/en/publications/irreducible-representations-of-the-chinese-monoid(dbbe99cb-5490-4e15-904b-b78790faedfd).html
https://cris.vub.be/en/publications/irreducible-representations-of-the-chinese-monoid(dbbe99cb-5490-4e15-904b-b78790faedfd).html
Autor:
Łukasz Kubat, Jan Okniński
Publikováno v:
Vrije Universiteit Brussel
It is shown that the plactic monoid M of rank \(3\) satisfies the identity \(wvvwvw=wvwvvw\) where \(v=xyyx xy xyyx\) and \(w= xyyx yx xyyx\). This is accomplished by first showing that certain simple monoids related to \(M\) satisfy this identity. T
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::38dacf25a1da4dc50542ddd31dd71999
https://researchportal.vub.be/en/publications/eed759c3-66f4-454b-a52a-7579f1ea3c23
https://researchportal.vub.be/en/publications/eed759c3-66f4-454b-a52a-7579f1ea3c23
Publikováno v:
Vrije Universiteit Brussel
This paper uses the combinatorics of Young tableaux to prove the plactic monoid of infinite rank does not satisfy a non-trivial identity, by showing that the plactic monoid of rank $n$ cannot satisfy a non-trivial identity of length less than or equa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2aec4514c3203fae3b62dee72daa2241
https://cris.vub.be/en/publications/a-note-on-identities-in-plactic-monoids-and-monoids-of-uppertriangular-tropical-matrices(b3226652-7eea-4613-9b79-e40f5d304807).html
https://cris.vub.be/en/publications/a-note-on-identities-in-plactic-monoids-and-monoids-of-uppertriangular-tropical-matrices(b3226652-7eea-4613-9b79-e40f5d304807).html