Zobrazeno 1 - 10
of 13
pro vyhledávání: '"İbrahim Yalçınkaya"'
Publikováno v:
AIMS Mathematics, Vol 8, Iss 3, Pp 6309-6322 (2023)
In this paper, we investigate the qualitative behavior of the fuzzy difference equation $ \begin{equation*} z_{n+1} = \frac{Az_{n-s}}{B+C\prod\limits_{i = 0}^{s}z_{n-i}} \end{equation*} $ where $ n\in \mathbb{N}_{0} = \; \mathbb{N} \cup \left\{
Externí odkaz:
https://doaj.org/article/01e098e5a4d84bdb8b135f0c1034e152
Publikováno v:
Journal of Ocean Engineering and Science, Vol 7, Iss 5, Pp 444-448 (2022)
In this study, the authors obtained the soliton and periodic wave solutions for time fractional symmetric regularized long wave equation (SRLW) and Ostrovsky equation (OE) both arising as a model in ocean engineering. For this aim modified extended t
Externí odkaz:
https://doaj.org/article/c2dfa1a3d6ff4e00aa29fb61ac098206
Publikováno v:
Mathematical Biosciences and Engineering, Vol 18, Iss 5, Pp 5392-5408 (2021)
In this paper, we present a detailed study of the following system of difference equations $ \begin{equation*} x_{n+1} = \frac{a}{1+y_{n}x_{n-1}}, \ y_{n+1} = \frac{b}{1+x_{n}y_{n-1}}, \ n\in\mathbb{N}_{0}, \end{equation*} $ where the parameter
Externí odkaz:
https://doaj.org/article/574b60b4e811461a8aea8149e40f1e93
Autor:
İbrahim Yalçınkaya
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2012 (2012)
We study the behavior of the well-defined solutions of the max type difference equation 𝑥𝑛+1=max{1/𝑥𝑛,𝐴𝑛𝑥𝑛−1}, 𝑛=0,1,…, where the initial conditions are arbitrary nonzero real numbers and {𝐴𝑛} is a period-two sequ
Externí odkaz:
https://doaj.org/article/5d0ac69edf1c4b479860a05412d7b88f
Publikováno v:
Advances in Difference Equations, Vol 2010 (2010)
We prove that every positive solution of the max-type difference equation xn=max{A/xn-pα,B/xn-kβ}, n=0,1,2,… converges to x¯=max{A1/(1+α),B1/(1+β)} where p,k are positive integers, 0
Externí odkaz:
https://doaj.org/article/8081ba4d129446abae9f21a29420fd5f
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2010 (2010)
We investigate the periodic nature of the solution of the max-type difference equation 𝑥𝑛+1=max{𝑥𝑛,𝐴}/𝑥2𝑛𝑥𝑛−1, 𝑛=0,1,2,…, where the initial conditions are 𝑥−1=𝐴𝑟1 and 𝑥0=𝐴𝑟2 for 𝐴∈(0,∞), an
Externí odkaz:
https://doaj.org/article/31cec3ee52864aa5826d9bc0f2c894bb
Publikováno v:
Advances in Difference Equations, Vol 2008 (2008)
We show that every solution of the following system of difference equations xn+1(1)=xn(2)/(xn(2)−1), xn+1(2)=xn(3)/(xn(3)−1),…,xn+1(k)=xn(1)/(xn(1)−1) as well as of the system xn+1(1)=xn(k)/(xn(k)âÂ
Externí odkaz:
https://doaj.org/article/3b520cd64b614bfabf52d7f389243564
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2008 (2008)
We investigate the periodic nature of solutions of the max difference equation xn+1=max{xn,A}/(xnxn−1), n=0,1,…, where A is a positive real parameter, and the initial conditions x−1=Ar−1 and x0=Ar0 such that r−1 and r0 are positive ratio
Externí odkaz:
https://doaj.org/article/fa2ca7dad153495e998dbf8932bc889a
Autor:
İbrahim Yalçinkaya
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2008 (2008)
We investigate the global behaviour of the difference equation of higher order 𝑥𝑛+1=𝛼+𝑥𝑛−𝑚/𝑥𝑘𝑛, 𝑛=0,1,…, where the parameters 𝛼,𝑘∈(0,∞) and the initial values 𝑥−𝑚,𝑥−(𝑚−1),…,𝑥−2,𝑥
Externí odkaz:
https://doaj.org/article/b189e3a1818449b78ddcd7141603117a
Autor:
Ibrahim Yalcinkaya
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2008 (2008)
A sufficient condition is obtained for the global asymptotic stability of the following system of difference equations 𝑧𝑛+1=(𝑡𝑛𝑧𝑛−1+𝑎)/(𝑡𝑛+𝑧𝑛−1),𝑡𝑛+1=(𝑧𝑛𝑡𝑛−1+𝑎)/(𝑧𝑛+𝑡𝑛−1),𝑛=
Externí odkaz:
https://doaj.org/article/8aa919fe20e44ac09da5e284b800abfb