Zobrazeno 1 - 10
of 71
pro vyhledávání: '"İNCE, Kenan"'
Autor:
Friedl, Stefan, İnce, Kenan
We will explain the relationship between one of the most beautiful theorems in topology, namely Fenn's Table Theorem, and one of the most famous open problems in topology, namely the Square Peg Problem.
Comment: 8 pages, 6 figures
Comment: 8 pages, 6 figures
Externí odkaz:
http://arxiv.org/abs/2303.17711
Autor:
İnce, Cemile1 (AUTHOR) cemile.ince@inonu.edu.tr, İnce, Kenan2 (AUTHOR) kenanince@gmail.com, Hanbay, Davut1 (AUTHOR) davut.hanbay@inonu.edu.tr
Publikováno v:
Entropy. Oct2024, Vol. 26 Issue 10, p885. 20p.
Publikováno v:
Pacific J. Math. 330 (2024) 25-41
The untwisting number of a knot K is the minimum number of null-homologous twists required to convert K to the unknot. Such a twist can be viewed as a generalization of a crossing change, since a classical crossing change can be effected by a null-ho
Externí odkaz:
http://arxiv.org/abs/2211.04621
Autor:
Ince, Kenan1 (AUTHOR) kenanince@gmail.com
Publikováno v:
International Journal of Information Security. Apr2024, Vol. 23 Issue 2, p1117-1130. 14p.
Autor:
Topaz, Chad M., Cart, James, Eaton, Carrie Diaz, Shrout, Anelise Hanson, Higdon, Jude A., İnce, Kenan, Katz, Brian, Lewis, Drew, Libertini, Jessica, Smith, Christian Michael
In its December 2019 edition, the \textit{Notices of the American Mathematical Society} published an essay critical of the use of diversity statements in academic hiring. The publication of this essay prompted many responses, including three public l
Externí odkaz:
http://arxiv.org/abs/1912.13334
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ince, Kenan A.1 kince@westminstercollege.edu
Publikováno v:
Journal of Humanistic Mathematics. Jul2023, Vol. 13 Issue 2, p126-150. 25p.
Autor:
Ince, Kenan
Publikováno v:
Algebr. Geom. Topol. 17 (2017) 2283-2306
The unknotting number of a knot is the minimum number of crossings one must change to turn that knot into the unknot. We work with a generalization of unknotting number due to Mathieu-Domergue, which we call the untwisting number. The p-untwisting nu
Externí odkaz:
http://arxiv.org/abs/1604.03033
Autor:
Ince, Kenan
Publikováno v:
Pacific J. Math. 283 (2016) 139-156
The unknotting number of a knot is the minimum number of crossings one must change to turn that knot into the unknot. The algebraic unknotting number is the minimum number of crossing changes needed to transform a knot into an Alexander polynomial-on
Externí odkaz:
http://arxiv.org/abs/1507.04386
Publikováno v:
Multimedia Tools & Applications; Sep2024, Vol. 83 Issue 29, p72789-72817, 29p