Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Đinh, Sĩ Tiệp"'
The main goal of this paper is to present some explicit formulas for computing the {{\L}}ojasiewicz exponent in the {{\L}}ojasiewicz inequality comparing the rate of growth of two real bivariate analytic function germs.
Externí odkaz:
http://arxiv.org/abs/2405.06302
Autor:
Dinh, Si Tiep, Pham, Tien Son
We provide necessary and sufficient conditions for a set-valued mapping between finite dimensional spaces to be directionally open by relating this property with directional regularity, H\"older continuity of the inverse mapping, coderivatives and va
Externí odkaz:
http://arxiv.org/abs/2207.12240
Given two nonzero polynomials $f, g \in\mathbb R[x,y]$ and a point $(a, b) \in \mathbb{R}^2,$ we give some necessary and sufficient conditions for the existence of the limit $\displaystyle \lim_{(x, y) \to (a, b)} \frac{f(x, y)}{g(x, y)}.$ We also sh
Externí odkaz:
http://arxiv.org/abs/2202.04889
Autor:
Dinh, Si Tiep, Pham, Tien Son
For a definable continuous mapping $f$ from a definable connected open subset $\Omega$ of $\mathbb R^n$ into $\mathbb R^n,$ we show that the following statements are equivalent: (i) The mapping $f$ is open. (ii) The fibers of $f$ are finite and the J
Externí odkaz:
http://arxiv.org/abs/2106.01593
Autor:
Dinh, Si Tiep, Pham, Tien Son
In this paper, we relate the set of asymptotic critical values of a polynomial function $f$ with the set of discontinuity of two functions, the multivalued function which associate to each value $t$ the set of tangent directions at infinity of the fi
Externí odkaz:
http://arxiv.org/abs/2105.10345
Autor:
Dinh, Si Tiep, Pham, Tien Son
This paper addresses to Nichtnegativstellens\"atze for definable functions in o-minimal structures on $(\mathbb{R}, +, \cdot).$ Namely, let $f, g_1, \ldots, g_l \colon \mathbb{R}^n \to \mathbb{R}$ be definable $C^p$-functions ($p \ge 2$) and assume t
Externí odkaz:
http://arxiv.org/abs/2105.08278
Autor:
Dinh, Si Tiep, Pham, Tien Son
This paper addresses the Mountain Pass Theorem for locally Lipschitz functions on finite-dimensional vector spaces in terms of tangencies. Namely, let $f \colon \mathbb R^n \to \mathbb R$ be a locally Lipschitz function with a mountain pass geometry.
Externí odkaz:
http://arxiv.org/abs/2105.07138
Publikováno v:
In Journal of Symbolic Computation October 2024
Given a closed semi-algebraic set $X \subset \mathbb{R}^n$ and a continuous semi-algebraic mapping $G \colon X \to \mathbb{R}^m,$ it will be shown that there exists an open dense semi-algebraic subset $\mathscr{U}$ of $L(\mathbb{R}^n, \mathbb{R}^m),$
Externí odkaz:
http://arxiv.org/abs/2010.04952
We study the set of tangent limits at a given point to a set definable in any o-minimal structure by characterizing the set of exceptional rays in the tangent cone to the set at that point and investigating the set of tangent limits along these rays.
Externí odkaz:
http://arxiv.org/abs/2010.03445