Zobrazeno 1 - 10
of 74
pro vyhledávání: '"čebyšev inequality"'
Publikováno v:
AIMS Mathematics, Vol 6, Iss 5, Pp 4507-4525 (2021)
In this work, a new strategy to derive inequalities by employing newly proposed fractional operators, known as a Hilfer generalized proportional fractional integral operator ($\widehat{\mathcal{GPFIO}}$). The presented work establishes a relationship
Externí odkaz:
https://doaj.org/article/894b9157ec4e48a0a90926fc4782a3a2
Autor:
Dragomir Silvestru Sever
Publikováno v:
Special Matrices, Vol 8, Iss 1, Pp 172-180 (2020)
Let f be an operator monotonic function on I and A, B∈I (H), the class of all selfadjoint operators with spectra in I. Assume that p : [0.1], →ℝ is non-decreasing on [0, 1]. In this paper we obtained, among others, that for A ≤ B and f an ope
Externí odkaz:
https://doaj.org/article/5857d7912d5e463bb3137db627e06b91
Publikováno v:
AIMS Mathematics, Vol 5, Iss 6, Pp 6073-6086 (2020)
The key purpose of this study is to suggest a delta Riemann-Liouville (RL) fractional integral operators for deriving certain novel refinements of Pólya-Szegö and Čebyšev type inequalities on time scales. Some new Pólya-Szegö, Čebyšev and ext
Externí odkaz:
https://doaj.org/article/43a459fcf5df48d2ab250da6d2661003
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-18 (2020)
Abstract In this paper, we introduce the generalized k-fractional integral in terms of a new parameter k > 0 $k>0$ , present some new important inequalities of Pólya–Szegö and Čebyšev types by use of the generalized k-fractional integral. Our c
Externí odkaz:
https://doaj.org/article/42398c0729ee4fa6b0eae711f561a5ed
Autor:
Min-Jie Luo, Ravinder Krishna Raina
Publikováno v:
Journal of Inequalities and Applications, Vol 2019, Iss 1, Pp 1-15 (2019)
Abstract We establish some new inequalities for the modified Bessel-type function λν,σ(β)(x) $\lambda _{\nu ,\sigma }^{(\beta )} (x )$ studied by Glaeske et al. [in J. Comput. Appl. Math. 118(1–2):151–168, 2000] as the kernel of an integral t
Externí odkaz:
https://doaj.org/article/747d4eb2148e479b9b589304a006fe3f
Publikováno v:
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 25, Iss 2, Pp 135-147 (2017)
Some operator inequalities for synchronous functions that are related to the čebyšev inequality are given. Among other inequalities for synchronous functions it is shown that ∥ø(f(A)g(A)) - ø(f(A))ø(g(A))∥ ≤ max{║ø(f2(A)) - ø2(f(A))║
Externí odkaz:
https://doaj.org/article/83dfa7e843bc4f56bd760a339d8d7baf
Autor:
Silvestru Sever Dragomir
Publikováno v:
Special Matrices, Vol 8, Iss 1, Pp 172-180 (2020)
Let f be an operator monotonic function on I and A, B∈I (H), the class of all selfadjoint operators with spectra in I. Assume that p : [0.1], →ℝ is non-decreasing on [0, 1]. In this paper we obtained, among others, that for A ≤ B and f an ope
Autor:
Dragomir, S. S.
Publikováno v:
Filomat, 2010 Jan 01. 24(2), 27-39.
Externí odkaz:
https://www.jstor.org/stable/24895479
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
AIMS Mathematics, Vol 5, Iss 6, Pp 6073-6086 (2020)
The key purpose of this study is to suggest a delta Riemann-Liouville (RL) fractional integral operators for deriving certain novel refinements of Pólya-Szegö and Čebyšev type inequalities on time scales. Some new Pólya-Szegö, Čebyšev and ext