Zobrazeno 1 - 10
of 60
pro vyhledávání: '"Čada, Roman"'
Autor:
Čada, Roman, Furuya, Michitaka, Kimura, Kenji, Ozeki, Kenta, Purcell, Christopher, Yashima, Takamasa
The main result of this paper is an edge-coloured version of Tutte's $f$-factor theorem. We give a necessary and sufficient condition for an edge-coloured graph $G^c$ to have a properly coloured $f$-factor. We state and prove our result in terms of a
Externí odkaz:
http://arxiv.org/abs/2311.09042
Strengthening the classical concept of Steiner trees, West and Wu [J. Combin. Theory Ser. B 102 (2012), 186--205] introduced the notion of a $T$-connector in a graph $G$ with a set $T$ of terminals. They conjectured that if the set $T$ is $3k$-edge-c
Externí odkaz:
http://arxiv.org/abs/2308.07218
Publikováno v:
Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 7, 845--855
A graph is called \emph{claw-free} if it contains no induced subgraph isomorphic to $K_{1,3}$. Matthews and Sumner proved that a 2-connected claw-free graph $G$ is hamiltonian if every vertex of it has degree at least $(|V(G)|-2)/3$. At the workshop
Externí odkaz:
http://arxiv.org/abs/1409.4585
Publikováno v:
In Journal of Combinatorial Theory, Series B September 2015 114:124-147
Autor:
Čada, Roman1,2 (AUTHOR), Ozeki, Kenta3 (AUTHOR) ozeki-kenta-xr@ynu.ac.jp, Yoshimoto, Kiyoshi4 (AUTHOR)
Publikováno v:
Journal of Graph Theory. Feb2020, Vol. 93 Issue 2, p168-180. 13p.
Publikováno v:
In Discrete Applied Mathematics December 2013 161(18):2876-2884
Publikováno v:
In Discrete Mathematics 2009 309(22):6337-6343
Autor:
Čada, Roman
Publikováno v:
In Discrete Mathematics 2008 308(23):5622-5631
Autor:
Čada, Roman
Publikováno v:
In Discrete Mathematics 2008 308(23):5585-5596