Zobrazeno 1 - 9
of 9
pro vyhledávání: '"íric Fusy"'
Publikováno v:
Recercat. Dipósit de la Recerca de Catalunya
instname
Journal of Combinatorial Theory, Series A
Journal of Combinatorial Theory, Series A, Elsevier, 2011, 118 (3), pp.993-1020. ⟨10.1016/j.jcta.2010.03.017⟩
Journal of Combinatorial Theory, Series A, 2011, 118 (3), pp.993-1020. ⟨10.1016/j.jcta.2010.03.017⟩
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
instname
Journal of Combinatorial Theory, Series A
Journal of Combinatorial Theory, Series A, Elsevier, 2011, 118 (3), pp.993-1020. ⟨10.1016/j.jcta.2010.03.017⟩
Journal of Combinatorial Theory, Series A, 2011, 118 (3), pp.993-1020. ⟨10.1016/j.jcta.2010.03.017⟩
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
The Baxter number can be written as $B_n = \sum_0^n \Theta_{k,n-k-1}$. These numbers have first appeared in the enumeration of so-called Baxter permutations; $B_n$ is the number of Baxter permutations of size $n$, and $\Theta_{k,l}$ is the number of
Autor:
íric Fusy
Publikováno v:
European Journal of Combinatorics. 31:145-160
This article presents new bijections on planar maps. At first a bijection is established between bipolar orientations on planar maps and specific "transversal structures" on triangulations of the 4-gon with no separating 3-cycle, which are called irr
Publikováno v:
European Journal of Combinatorics. 30(7):1646-1658
A bijection $\Phi$ is presented between plane bipolar orientations with prescribed numbers of vertices and faces, and non-intersecting triples of upright lattice paths with prescribed extremities. This yields a combinatorial proof of the following fo
Publikováno v:
European Journal of Combinatorics
European Journal of Combinatorics, Elsevier, 2014, 35, pp. 13-31. ⟨10.1016/j.ejc.2013.06.031⟩
European Journal of Combinatorics, 2014, 35, pp. 13-31. ⟨10.1016/j.ejc.2013.06.031⟩
European Journal of Combinatorics, Elsevier, 2014, 35, pp. 13-31. ⟨10.1016/j.ejc.2013.06.031⟩
European Journal of Combinatorics, 2014, 35, pp. 13-31. ⟨10.1016/j.ejc.2013.06.031⟩
This article presents new enumerative results related to symmetric planar maps. In the first part a new way of enumerating rooted simple quadrangulations and rooted simple triangulations is presented, based on the description of two different quotien
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::59de4869f898ada68791fe23a1ff2f5f
https://hal.archives-ouvertes.fr/hal-00732814
https://hal.archives-ouvertes.fr/hal-00732814
Publikováno v:
Discrete Mathematics and Theoretical Computer Science
Discrete Mathematics and Theoretical Computer Science (DMTCS)
24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), 2012, Nagoya, Japan. pp.215-226
Journal of Combinatorial Theory, Series A
Journal of Combinatorial Theory, Series A, Elsevier, 2013, 120 (8), pp.Pages 2064-2092. ⟨10.1016/j.jcta.2013.08.003⟩
Journal of Combinatorial Theory, Series A, 2013, 120 (8), pp.Pages 2064-2092. ⟨10.1016/j.jcta.2013.08.003⟩
Scopus-Elsevier
Discrete Mathematics and Theoretical Computer Science (DMTCS)
24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), 2012, Nagoya, Japan. pp.215-226
Journal of Combinatorial Theory, Series A
Journal of Combinatorial Theory, Series A, Elsevier, 2013, 120 (8), pp.Pages 2064-2092. ⟨10.1016/j.jcta.2013.08.003⟩
Journal of Combinatorial Theory, Series A, 2013, 120 (8), pp.Pages 2064-2092. ⟨10.1016/j.jcta.2013.08.003⟩
Scopus-Elsevier
We consider unicellular maps, or polygon gluings, of fixed genus. A few years ago the first author gave a recursive bijection transforming unicellular maps into trees, explaining the presence of Catalan numbers in counting formulas for these objects.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2961c88642dd8b0a9fe29e6a6a476bd9
http://arxiv.org/abs/1202.3252
http://arxiv.org/abs/1202.3252
Publikováno v:
Journal of Combinatorial Theory, Series A
Journal of Combinatorial Theory, Series A, Elsevier, 2011, 118 (3), pp.748--777. ⟨10.1016/j.jcta.2010.11.014⟩
Journal of Combinatorial Theory, Series A, 2011, 118 (3), pp.748--777. ⟨10.1016/j.jcta.2010.11.014⟩
Journal of Combinatorial Theory, Series A, Elsevier, 2011, 118 (3), pp.748--777. ⟨10.1016/j.jcta.2010.11.014⟩
Journal of Combinatorial Theory, Series A, 2011, 118 (3), pp.748--777. ⟨10.1016/j.jcta.2010.11.014⟩
International audience; It is shown that the number of labelled graphs with $n$ vertices that can be embedded in the orientable surface $\mathbb{S}_g$ of genus $g$ grows asymptotically like $ c^{(g)}n^{5(g-1)/2-1}\gamma^n n! $, where $c^{(g)} >0$, an
Autor:
íric Fusy, Olivier Bernardi
Publikováno v:
Journal of Combinatorial Theory, Series A
Journal of Combinatorial Theory, Series A, 2012, 119, pp.1351-1387
Journal of Combinatorial Theory, Series A, 2012, 119, pp.1351-1387
International audience; This article presents unified bijective constructions for planar maps, with control on the face degrees and on the girth. Recall that the girth is the length of the smallest cycle, so that maps of girth at least $d=1,2,3$ are
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::442ec71b45eefdb7ac1b7fb8dd27e1c5
http://arxiv.org/abs/1102.3619
http://arxiv.org/abs/1102.3619
Autor:
Olivier Bernardi, íric Fusy
Publikováno v:
Journal of Combinatorial Theory, Series A
Journal of Combinatorial Theory, Series A, 2012, 119 (1), pp.218-244
Journal of Combinatorial Theory, Series A, 2012, 119 (1), pp.218-244
International audience; A $d$-angulation is a planar map with faces of degree $d$. We present for each integer $d\geq 3$ a bijection between the class of $d$-angulations of girth~$d$ (i.e., with no cycle of length less than $d$) and a class of decora
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a0ac8a72dab13304da82af59a45a4131
Autor:
íric Fusy
This article focuses on a combinatorial structure specific to triangulated plane graphs with quadrangular outer face and no separating triangle, which are called irreducible triangulations. The structure has been introduced by Xin He under the name o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ecf4ad5ae14043d21cadf40177f4e138