Zobrazeno 1 - 4
of 4
pro vyhledávání: '"équation des milieux poreux"'
Autor:
David, Noemi
Publikováno v:
Analysis of PDEs [math.AP]. Sorbonne Universites, UPMC University of Paris 6, 2022. English. ⟨NNT : ⟩
Both compressible and incompressible porous medium models have been used in the literature to describe the mechanical aspects of living tissues, and in particular of tumor growth. Using a stiff pressure law, it is possible to build a link between the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::405e512724f97f73e4d28dda46717d8d
https://hal.science/tel-03916210
https://hal.science/tel-03916210
Autor:
Muratori, Matteo
Publikováno v:
Analysis of PDEs [math.AP]. Politecnico di Milano; Université Paris 1 Panthéon-Sorbonne, 2015. English
The main topic of this thesis is the study of the asymptotic behaviour of solutions to certain nonlinear diffusion equations, whose most important models are the porous medium equation and the fast diffusion equation. In the first chapter we analyse
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______212::e9034160ca22426216b6e3a25b090f0e
https://hal.archives-ouvertes.fr/tel-01289874/document
https://hal.archives-ouvertes.fr/tel-01289874/document
Autor:
Muratori, Matteo
Publikováno v:
Analysis of PDEs [math.AP]. Politecnico di Milano; Université Paris 1 Panthéon-Sorbonne, 2015. English
The main topic of this thesis is the study of the asymptotic behaviour of solutions to certain nonlinear diffusion equations, whose most important models are the porous medium equation and the fast diffusion equation. In the first chapter we analyse
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2592::e9034160ca22426216b6e3a25b090f0e
https://hal.archives-ouvertes.fr/tel-01289874/document
https://hal.archives-ouvertes.fr/tel-01289874/document
Autor:
Jérôme Demange
Publikováno v:
Bulletin des Sciences Mathématiques. 129:804-830
We study the link between some modified porous media equation and Sobolev inequalities on a Riemannian manifold M whose Ricci curvature tensor is bounded below by a negative constant −ρ. The method used deals with entropy–energy differentiation