Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Ünsal Tekir"'
Publikováno v:
Mathematics, Vol 12, Iss 12, p 1801 (2024)
Over the years, prime submodules and their generalizations have played a pivotal role in commutative algebra, garnering considerable attention from numerous researchers and scholars in the field. This papers presents a generalization of 1-absorbing p
Externí odkaz:
https://doaj.org/article/4e1eee77a9644d81a24d6fdcd994a8f0
Publikováno v:
Mathematics, Vol 12, Iss 11, p 1636 (2024)
Prime ideals and their generalizations are crucial in numerous research areas, particularly in commutative algebra. The concept of generalization of prime ideals begins with the study of weakly prime ideals. Since then, subsequent works aimed at expa
Externí odkaz:
https://doaj.org/article/cf2e2f289e5f499c8f6e6734a9fb1262
Publikováno v:
Cubo, Vol 24, Iss 2, Pp 291-305 (2022)
In this paper, we introduce and study graded weakly 1-absorbing prime ideals in graded commutative rings. Let $G$ be a group and $R$ be a $G$-graded commutative ring with a nonzero identity $1\neq0$. A proper graded ideal $P$ of $R$ is called a grade
Externí odkaz:
https://doaj.org/article/000f367ce1354deaa3658c2293924518
Publikováno v:
Journal of Mathematics, Vol 2020 (2020)
This article introduces the concept of S-semiprime submodules which are a generalization of semiprime submodules and S-prime submodules. Let M be a nonzero unital R-module, where R is a commutative ring with a nonzero identity. Suppose that S is a mu
Externí odkaz:
https://doaj.org/article/5073ba762ac94ddca58600b4e90e98df
Publikováno v:
The Scientific World Journal, Vol 2014 (2014)
Let M be a lattice module over the multiplicative lattice L. A nonzero L-lattice module M is called second if for each a∈L, a1M=1M or a1M=0M. A nonzero L-lattice module M is called secondary if for each a∈L, a1M=1M or an1M=0M for some n>0. Our ob
Externí odkaz:
https://doaj.org/article/ed59fc0fc1264c6b9d9790c441b1853e
Publikováno v:
Czechoslovak Mathematical Journal. 73:553-564
Publikováno v:
Communications in Algebra. 51:2510-2519
In this paper, we studyS-Principal ideal multiplication modules. LetA \" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: non
Publikováno v:
Czechoslovak Mathematical Journal. 73:415-429
Publikováno v:
Communications in Algebra. 51:1479-1491
Recall that a commutative ring R is said to be a normal ring if it is reduced and every two distinct minimal prime ideals are comaximal. A finitely generated reduced R-module M is said to be a normal module if every two distinct minimal prime submodu
Publikováno v:
Proceedings of the Bulgarian Academy of Sciences. 75:631-639
Let R be a commutative ring with a nonzero identity. A proper ideal I of R is said to be a 1-absorbing prime ideal if xyz is an element of I for some nonunits x, y, z is an element of R, then xy is an element of I or z is an element of I. It is well